Difference between revisions of "Book index"
Line 162: | Line 162: | ||
<div> | <div> | ||
<p style="font-size: 150%;">'''Extraordinary science'''</p> | <p style="font-size: 150%;">'''Extraordinary science'''</p> | ||
<p style="font-size: 100%; color: black;">(''Affiliates Only Accesss''{{Tooltip|2=Masticationpedia aims to make science a universal and accessible heritage, breaking down the barriers of knowledge reserved for a privileged few. By joining, you will gain exclusive access to the "Extraordinary Science" section, featuring advanced tutorials and materials dedicated to masticatory rehabilitation. Members can actively participate in collaborative editorial processes, forums, propose content in their own language as editors, write their own article/chapter following the editorial strategy, and become part of the Scientific Community. Affiliates can attend residential training at the Education Center in Rome, becoming recognized experts within the Masticationpedia Network. | <p style="font-size: 100%; color: black;">(''Affiliates Only Accesss''{{Tooltip|2=Masticationpedia aims to make science a universal and accessible heritage, breaking down the barriers of knowledge reserved for a privileged few. By joining, you will gain exclusive access to the "Extraordinary Science" section (in progress), featuring advanced tutorials and materials dedicated to masticatory rehabilitation. Members can actively participate in collaborative editorial processes, forums, propose content in their own language as editors, write their own article/chapter following the editorial strategy, and become part of the Scientific Community. Affiliates can attend residential training at the Education Center in Rome, becoming recognized experts within the [[Our_network|Masticationpedia Network]]. | ||
Your £100 annual membership supports this vision, ensuring the platform remains an inclusive and cutting-edge space for advancing scientific knowledge. | Your £100 annual membership supports this vision, ensuring the platform remains an inclusive and cutting-edge space for advancing scientific knowledge. |
Revision as of 18:04, 9 December 2024
Normal Science
(Public Open Access This section is open to all users and represents the most inclusive part of the project, offering information and resources accessible to everyone.)
- Logic of medical language
- The Complex Systems
- Logic of medical language: Introduction to quantum-like probability in the masticatory system
- Conclusions on the status quo in the logic of medical language regarding the masticatory system
- 4° Clinical case: Temporomandibular disorders
- 5° Clinical case: Spontaneous Electromyographic Activity
Crisis of Paradigm
(Members only access This section is reserved exclusively for users who have received a personal invitation to register on Masticationpedia. This invitation is sent only to carefully selected colleagues, chosen for their professional value, scientific interest, and distinctive qualities. If you find the topics interesting and have not received an invitation, you can request one by submitting a request through the 'Member Account request form'. (a Google Account is needed to request the Member Account). )
Research Diagnostic Criteria (RDC)
- Jaw movements analysis: Electrognathographic Replicator
- Transverse Hinge Axis
- Vertical Hinge Axis
- The Magic of the Condylar Sphere
- Jaw movements analysis:Pantographic Replicator
- Intercondylar Distance
- Advantage and Limit of Pantography
- Jaw movements analysis:Axiographic Replicator
- Interfacial Distance
- Advantage and Limit of Axiography
- Electromyography (EMG)
- EMG Interferential pattern
- EMG at rest position
- Quantitative Analysis of EMG
- Fourier transform
- Wavelett
- Transcutaneous Electric Nerve Stimulation
- Intraocclusal free way space
- The mysterious "Muscle tone"
- Closing trajectory from TENS
- Intraocclusal free way space
Beyond the RDC
- Clinical Electromyography
- Artificial Neural Networks: Automatic Neuromuscular Diagnostic
- Trigeminal Neurophysiopathology
- Trigeminal Nociceptive Evaluation in TMD Patients by studying CO2-Laser Evoked Potentials and Masseter Laser Silent Periods
- Electrical and Magnetic Stimulation of the Central and Peripheral Nervous System:Modeling of Generated Fields and Data Interpretation
- Transcranial Magnetic Stimulation and Brain Plasticity in Post-Stroke Recovery
- Pain Pathophysiology
- Role of Metabotropic Glutamate Receptors in Pain
- Neuronal Basis of Neuropathic Pain and Neuroprotective Mechanisms of Antiepileptic Drugs
- Use of Functional Magnetic Resonance Imaging (fMRI) in Pain Research
- Neuroradiology in Craniofacial Pain
Conclusions to the Paradigm crisis section
Research Diagnostic Criteria (RDC)
- Jaw movements analysis: Electrognathographic Replicator
- Transverse Hinge Axis
- Vertical Hinge Axis
- The Magic of the Condylar Sphere
- Jaw movements analysis:Pantographic Replicator
- Intercondylar Distance
- Advantage and Limit of Pantography
- Jaw movements analysis:Axiographic Replicator
- Interfacial Distance
- Advantage and Limit of Axiography
- Electromyography (EMG)
- EMG Interferential pattern
- EMG at rest position
- Quantitative Analysis of EMG
- Fourier transform
- Wavelett
- Transcutaneous Electric Nerve Stimulation
- Intraocclusal free way space
- The mysterious "Muscle tone"
- Closing trajectory from TENS
- Intraocclusal free way space
Beyond the RDC
- Clinic Electromyography
- Artificial Neural Networks: Automatic Neuromuscular Diagnostic
- Trigeminal Neurophysiopathology
- Trigeminal Nociceptive Evaluation in TMD Patients by studying CO2-Laser Evoked Potentials and Masseter Laser Silent Periods
- Electrical and Magnetic Stimulation of the Central and Peripheral Nervous System:Modeling of Generated Fields and Data Interpretation
- Transcranial Magnetic Stimulation and Brain Plasticity in Post-Stroke Recovery
- Pain Pathophysiology
- Role of Metabotropic Glutamate Receptors in Pain
- Neuronal Basis of Neuropathic Pain and Neuroprotective Mechanisms of Antiepileptic Drugs
- Use of Functional Magnetic Resonance Imaging (fMRI) in Pain Research
- Neuroradiology in Craniofacial Pain
Conclusions to the Paradigm crisis section
Extraordinary science
(Affiliates Only Accesss Masticationpedia aims to make science a universal and accessible heritage, breaking down the barriers of knowledge reserved for a privileged few. By joining, you will gain exclusive access to the "Extraordinary Science" section (in progress), featuring advanced tutorials and materials dedicated to masticatory rehabilitation. Members can actively participate in collaborative editorial processes, forums, propose content in their own language as editors, write their own article/chapter following the editorial strategy, and become part of the Scientific Community. Affiliates can attend residential training at the Education Center in Rome, becoming recognized experts within the Masticationpedia Network. Your £100 annual membership supports this vision, ensuring the platform remains an inclusive and cutting-edge space for advancing scientific knowledge. Thank you for being part of this transformative mission. To complete the affiliation process, follow the link: )
Connectivity
- Defining the Fundamental Unit
- Separating Structural Connectivity and Functional Connectivity
- Understanding emergent behaviour
- Measuring connectivity
Introduction to trigeminal electrophysiology
- General Context
- Electrical Stimulation
- Recording Electrical Activity
- Electrodes for Stimulation and Recording
- Analysis Software
- Synchronization and Latency
- Optional Modules
Trigeminal Structural Connectivity (SC)
- Trigeminal Root Motor Evoked Potentials (R-MEPS)
- Description
- Characteristics
Trigeminal Functional Connectivity (FC)
- Jaw jerk
- Masseter tendon silent period
- Masseter electrical silent period
- Recovery cycle of the masseter inhibitory reflex
- H-wave
Index
- Model description
- Role of trigeminal motor evoked potentials (R-MEPS) in evaluating SC
- Role of trigeminal reflexes in evaluating FC
- Separation between Structural Connectivity (SC) and Functional Connectivity (FC)
- Emergent Behaviour
- Quantum Modelling of the Index
- Quantum Bayes Theorem (QBayes)
- Differences from the classical approach
- Expectation Value and model description
- Mathematical Formalism of QBayes
- Cosine of as a measure of the overlap between concomitant pathologies
Indices in the masticatory rehabilitation
- Orthodontic field
- Orofacial.pain
- Implant-Prosthetics field
- Prosthetic field
Connectivity
- Defining the Fundamental Unit
- Separating Structural Connectivity and Functional Connectivity
- Understanding emergent behaviour
- Measuring connectivity
Introduction to trigeminal electrophysiology
- General Context
- Electrical Stimulation
- Recording Electrical Activity
- Electrodes for Stimulation and Recording
- Analysis Software
- Synchronization and Latency
- Optional Modules
Trigeminal Structural Connectivity (SC)
- Trigeminal Root Motor Evoked Potentials (R-MEPS)
- Description
- Characteristics
Trigeminal Functional Connectivity (FC)
- Jaw jerk
- Masseter tendon silent period
- Masseter electrical silent period
- Recovery cycle of the masseter inhibitory reflex
- H-wave
Index
- Model description
- Role of trigeminal motor evoked potentials (R-MEPS) in evaluating SC
- Role of trigeminal reflexes in evaluating FC
- Separation between Structural Connectivity (SC) and Functional Connectivity (FC)
- Emergent Behaviour
- Quantum Modelling of the Index
- Quantum Bayes Theorem (QBayes)
- Differences from the classical approach
- Expectation Value and model description
- Mathematical Formalism of QBayes
- Cosine of as a measure of the overlap between concomitant pathologies
Indices in the masticatory rehabilitation
- Orthodontic field
- Orofacial.pain
- Implant-Prosthetics field
- Prosthetic field