Difference between revisions of "Encrypted code: Ephaptic transmission"

 
(23 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{main menu}}


{{Template:Transl}}


Il termine di '<nowiki/>'''Rete Neurale Cognitiva'''<nowiki/>'  abbreviata in ''''RNC'''' è un processo intellettuale cognitivo dinamico del clinico che interroga la rete per auto-addestrarsi. La 'RNC' non è una 'Machine Learning' perchè mentre quest'ultima deve essere addestrata dal clinico, con aggiustamenti statistici e di predizione, la 'RNC' addestra il clinico o meglio indirizza il clinico alla diagnosi pur essendo sempre interrogata seguendo una logica umana, da qui il termine 'cognitiva'. Come dimostrato la definizione di 'Spasmo Emimasticatorio' nella nostra paziente Mary Poppins non è stato un percorso clinicamente semplice, tuttavia, considerando i temi presentati nei capitoli precedente di Masticationpedia abbiamo a disposizione almeno tre elementi di supporto: una visione di 'Probabilità quantistica' dei fenomeni fisico chimici nei sistemi complessi biologici di cui si parlerà diffusamente nei capitoli specifici; un linguaggio più formale e meno vago rispetto al linguaggio naturale che indirizza l'analisi diagnostica al primo nodo di input della 'RNC' attraverso lo 'Demarcatore di Coerenza <math>\tau</math>' descritto nel capitolo [[1° Clinical case: Hemimasticatory spasm|'1° Clinical case: Hemimasticatory spasm]]; il processo della 'RNC' che essendo gestito e guidato esclusivamente dal clinico diviene un mezzo imprenscindibile per la diagnosi definitiva. La 'RNC', infatti, è il risultato di un profondo processo cognitivo che si esegue su ogni passaggio dell'analisi in cui il clinico pesa le proprie intuizioni, chiarisce i propri dubbi, valuta i referti, considera i contesti ed avanza step by step confrontandosi con il risultato della risposta proveniente dal database che nel nostro caso è Pubmed e che sostanzialmente rappresenta l'attuale livello di conoscenza di base <math>KB_t</math> al tempo dell'interrogazione ed il <math>KB_c</math> nei più ampi contesti specialistici.
 
 
{{ArtBy|
  {{ArtBy|
| autore = Gianni Frisardi
| autore = Gianni Frisardi
| autore2 = Flavio Frisardi
| autore2 = Flavio Frisardi
| autore3 =  
| autore3 =Giorgio Cruccu
}}
}}
'''Abstract:''' In this chapter, we explore the cognitive process and methodology used to diagnose a complex neuromotor condition, Hemimasticatory Spasm, in a patient referred to as "Mary Poppins." Despite the apparent simplicity of the diagnosis, the complexity of biological systems and the limitations of traditional deterministic medical approaches led to a decade-long delay in identifying the correct condition. This case underscores the need for advanced diagnostic models capable of integrating multiple variables and probabilistic approaches.


{{Bookind2}}
We introduce the Cognitive Neural Network (CNN), a clinician-guided model designed to support diagnosis by iteratively analyzing input data and generating context-based outputs. Unlike machine learning models, the CNN is not reliant on pre-trained data but instead adapts based on real-time cognitive processes initiated by the clinician, making it more suited for complex, real-world clinical environments. The CNN model assists the clinician in decrypting the Central Nervous System's (CNS) encrypted signals by guiding the diagnostic process through a series of iterative cognitive steps, ultimately leading to the identification of the patient's condition.


== Intr<nowiki/>oduzione ==
Through this model, the chapter demonstrates how integrating a dynamic neural network model with human clinical expertise can overcome the limitations of classical probability models, such as those anchored in verbal symptoms and deterministic approaches. The chapter highlights the importance of quantum probability in understanding complex biological systems and discusses how the CNN, guided by key elements such as the "<math>\tau</math> Coherence Demarcator," helps to differentiate between competing diagnostic hypotheses.
Nel capitolo<nowiki/> '[[1° Clinical case: Hemimasticatory spasm]]' siamo giunti subito a conclusione bypassando tutto il processo cognitivo, clinico e scientifico che è alla base della definizione diagnostica ma non è così semplice altrimenti la nostra povera paziente Mary Poppins non avrebbe dovuto aspettare 10 anni per la diagnosi corretta.<blockquote>Va rimarcato che non si tratta di negligenza da parte dei clinici piuttosto di complessità dei 'Sistemi Complessi biologici' e soprattutto da una forma mentis ancorata, ancora, ad una 'Probabilità classiche' che categorizza i fenotipi sani e malati in funzione dei sintomi e segni clinici campionati invece di sondare lo 'Stato' di sistema nell'evoluzione temporale. Questo concetto, anticipato nel capitolo '[[Logic of medical language: Introduction to quantum-like probability in the masticatory system]]' ed in '[[Conclusions on the status quo in the logic of medical language regarding the masticatory system]]' ha gettato le basi per un linguaggio medico più articolato e meno deterministico, focalizzato principalmente sullo 'Stato' di 'Sistema mesoscopico' il cui scopo è, essenzialmente, quello di decriptare il messaggio in linguaggio macchina generato dal Sistema Nervoso Centrale come assisteremo nella descrizione di altri casi clinici che verranno riportati nei prossimi capitoli di Masticationpedia. </blockquote>Questo modello, che proponiamo con il termine di ''''Rete Neurale Cognitiva'''<nowiki/>'  abbreviata in ''''RNC'''' è un processo intellettuale cognitivo dinamico del clinico che interroga la rete per auto-addestrarsi. La 'RNC' non è una 'Machine Learning' perchè mentre quest'ultima deve essere addestrata dal clinico, con aggiustamenti statistici e di predizione, la 'RNC' addestra il clinico o meglio indirizza il clinico alla diagnosi pur essendo sempre interrogata seguendo una logica umana, da qui il termine 'cognitiva'.


Alcuni modelli di '''machine learning classici,''' infatti, il cui '''addestramento in laboratorio''' dà risultati positivi, falliscono applicati al '''contesto reale'''. Questo, in genere, è attribuito a una mancata corrispondenza tra i set di dati con i quali la macchina è stata addestrata e i dati che, invece, incontra nel mondo reale. Un esempio pratico di ciò può essere rappresentato dal conflitto di asserzioni incontrato nel processo diagnostico della nostra paziente Mary Poppins tra il contesto odontoiatrico e neurologico che solo il supporto del demarcatore di coerenza <math>\tau</math> (processo cognitivo) è riuscito a risolvere.
Using the Hemimasticatory Spasm case as an example, the CNN is presented as a tool that leverages both cognitive intuition and structured data analysis to produce a final, accurate diagnosis. This model lays the groundwork for broader applications in clinical practice, where cognitive processes are central to handling complex diagnostic challenges.
==Introduction==
In the chapter '[[1° Clinical case: Hemimasticatory spasm - en|1st Clinical case: Hemimasticatory spasm]]' we immediately reached a conclusion bypassing all the cognitive, clinical and scientific process which underlies the diagnostic definition but it is not that simple otherwise our poor patient Mary Poppins, would not have had to wait 10 years for the correct diagnosis.<blockquote>It should be emphasized that it is not a question of negligence on the part of clinicians rather of the complexity of 'biological systems' and above all of a mindset still anchored to a 'classical probability'. The 'Classical probability' categorizes healthy and diseased phenotypes according to symptoms and signs sampled clinicians instead of probing the 'State' of the system in the temporal evolution. This concept, anticipated in the chapter '[[Logic of medical language: Introduction to quantum-like probability in the masticatory system]]' and in '[[Conclusions on the status quo in the logic of medical language regarding the masticatory system]]' has laid the foundations for a medical language more articulated and less deterministic, mainly focused on the 'State' of the 'Mesoscopic System' whose purpose is, essentially, to decrypt the message in machine language generated by the Central Nervous System. We will assist in the description of other clinical cases that will be reported in the next Masticationpedia chapters. </blockquote>This model, which we propose with the term 'Cognitive Neural Network' abbreviated as 'CNN' is a dynamic cognitive intellectual process of the clinician who interrogates the network for self-training. The 'CNN' is not a 'Machine Learning' because while the latter must be trained by the clinician, with statistical and prediction adjustments, the 'CNN' trains the clinician or rather directs the clinician to the diagnosis while always being questioned following a logical human, hence the term 'Cognitive'.


Uno dei limiti del machine learning, dunque, è noto come “'''data shift'''”,<ref>Jérôme Dockès, Gaël Varoquaux, Jean-Baptiste Poline. Preventing dataset shift from breaking machine-learning biomarkers.GigaScience, Volume 10, Issue 9, September 2021, giab055,</ref> ovvero “'''spostamento dei dati'''” ed un’altra causa alla base del fallimento di alcuni modelli fuori dal laboratorio, è la “'''sottospecificazione'''“<ref>Alexander D’Amour et al. Underspecification Presents Challenges for Credibility in Modern Machine Learning. Journal of Machine Learning Research 23 (2022) 1-61,Submitted 11/20; Revised 12/21; Published 08/22</ref><ref>Damien Teney, Maxime Peyrard, Ehsan Abbasnejad. Predicting Is Not Understanding: Recognizing and Addressing Underspecification in Machine Learning.ECCV 2022: Computer Vision – ECCV 2022 pp 458–476Cite as</ref> tanto è vero che il tentativo di costruire un sistema EMR ( cartella clinica elettronica) potenziato con algoritmo progettato specificamente per l'uso in un centro oncologico, fu un fallimento notevole con un costo stimato di $ 39.000.000 USD. Questo sforzo è stato una partnership del 2012 tra M.D. Anderson Partners e IBM Watson a Houston, in Texas.<ref>Herper M. MD Anderson benches IBM Watson in setback for artificial intelligence in medicine. Forbes. 2017 February 19. [Ref list]</ref> Le prime notizie promozionali che descrivevano il progetto affermavano che il piano era quello di combinare dati genetici, rapporti patologici con note dei medici e articoli di riviste pertinenti per aiutare i medici a elaborare diagnosi e trattamenti. Tuttavia, cinque anni dopo, nel febbraio 2017, M.D. Anderson ha annunciato di aver chiuso il progetto poiché, dopo diversi anni di tentativi, non aveva prodotto uno strumento da utilizzare con i pazienti che fosse pronto per andare oltre i test pilota.
In fact, some classic machine learning models, whose training in the laboratory gives positive results, fail when applied to the real context. This is typically attributed to a mismatch between the datasets the machine was trained with and the data it encounters in the real world. A practical example of this can be represented by the conflict of assertions encountered in the diagnostic process of our patient Mary Poppins between the dental and neurological context, which only the support of the <math>\tau</math> coherence demarcator (cognitive process) managed to solve.


{{q2|Affascinante e provocatorio, spiegami in dettaglio |... il modello è essenzialmente semplice nella sua complessità cognitiva}}
One of the limits of machine learning, therefore, is known as "data shift",<ref>Jérôme Dockès, Gaël Varoquaux, Jean-Baptiste Poline. Preventing dataset shift from breaking machine-learning biomarkers.GigaScience, Volume 10, Issue 9, September 2021, giab055,</ref> or "data movement" and another underlying cause of the failure of some models outside the laboratory, is the "subspecification"<ref>Alexander D’Amour et al. Underspecification Presents Challenges for Credibility in Modern Machine Learning. Journal of Machine Learning Research 23 (2022) 1-61,Submitted 11/20; Revised 12/21; Published 08/22</ref><ref>Damien Teney, Maxime Peyrard, Ehsan Abbasnejad. Predicting Is Not Understanding: Recognizing and Addressing Underspecification in Machine Learning.ECCV 2022: Computer Vision – ECCV 2022 pp 458–476Cite as</ref> so much so that the attempt to build an algorithm-enhanced electronic medical record (EMR) system, designed specifically for use in a cancer center, was a notable failure at an estimated cost of $39,000,000 USD. This effort was a 2012 partnership between M.D. Anderson Partners and IBM Watson in Houston, Texas.<ref>Herper M. MD Anderson benches IBM Watson in setback for artificial intelligence in medicine. Forbes. 2017 February 19. [Ref list]</ref> Early promotional news describing the project stated that the plan was to combine genetic data, pathology reports with physicians' notes and relevant journal articles to help doctors come up with diagnoses and treatments. However, five years later, in February 2017, M.D. Anderson announced that he had closed the project because, after several years of trying, he hadn't produced a tool for use with patients that was ready to move beyond pilot testing.{{q2|Fascinating and provocative, explain to me in detail|... the model is essentially simple in its cognitive complexity}}


In sostanza il messaggio criptato in linguaggio macchina inviato all'esterno dal Sistema Nervoso Centrale nei 10 anni di malattia della nostra paziente Mary Poppins veniva interpretato attraverso un linguaggio verbale come Dolore Orofacciale da Disordini Tempormandibolari'. Abbiamo rimarcato più volte, però, che il linguaggio verbale umano è distorto dalla vaghezza e dalla ambiguità perciò non essendo un linguaggio formale, come quello matematico, può generare errori diagnostici. Il messaggio in linguaggio macchina inviato all'esterno dal Sistema Nervoso Centrale da ricercare non è il dolore ( il dolore è un linguaggio verbale) ma l'anomalia di 'Stato di Sistema' in cui l'organismo si trovava in quel periodo temporale. Da qui lo shiftamento dalla semeiotica del sintomo e del segno clinico alla '[[Logica di Sistema]]' che attraverso modelli di  'Teoria dei sistemi' quantificano le risposte del sistema da stimoli in entrata, anche nei soggetti sani.
In essence, the encrypted machine language message sent out by the Central Nervous System in the 10 years of illness of our patient Mary Poppins was interpreted, through verbal language, as Orofacial Pain from Temporomandibular Disorders'. We have remarked several times, however, that human verbal language is distorted by vagueness and ambiguity therefore, not being a formal language such as mathematical language, it can generate diagnostic errors. The message in machine language sent out by the Central Nervous System to be searched for is not pain (pain is a verbal language) but the 'Anomaly of System State' in which the organism was in that time period. Hence the shift from the semiotics of the symptom and the clinical sign to the '[[System logic|System Logic]]' which, through 'System's Theory' models, quantify the system's responses to incoming stimuli, even in healthy subjects.


Tutto ciò viene replicato nel modello proposto di 'RNC' andando a suddividere il processo in trigger in entrata (Input) e dati in uscita (Output) per poi essere reiterati in un loop gestito cognitivamente dal clinico fino alla generazione di un singolo nodo utile per la diagnosi definitiva. Il modello, sostanzialmente, si articola nel seguente modo:  
All this conceptuality is replicated in the proposed 'CNN' model by dividing the process into incoming triggers (Input) and outgoing data (Output) to then be reiterated in a loop managed cognitively by the clinician up to the generation of a single node useful for the definitive diagnosis. The model basically breaks down as follows:


* '''Input:''' Per trigger in entrata si intende il processo cognitivo che il clinico attua in funzione delle considerazioni pervenute da precedenti asserzioni, come è stato puntualizzato nei capitoli riguardanti la 'Logica di linguaggio medico'. Nel nostro caso, attraverso il 'Demarcatore di coerenza <math>\tau</math> è stato definito idoneo il contesto neurologico invece dell'odontoiatrico che perseguiva una spiegazione clinico diagnostica di TMDs. Questo trigger è di essenziale importanza perchè permette al clinico di centrare il '''comando di iniziazione di analisi''' delle rete che connetterà un ampio campione di dati corrispondenti al trigger impostato. A questo essenziale comando iniziale, come chiave algoritmica di decriptazione, si aggiunge l'ultimo comando di chiusura che è altrettanto importante in quanto dipende dall'intuizione del clinico  il quale reputerà finito il processo di decriptazione. In Figura 1, viene rappresentata la struttura della 'RNC' in cui si può notare la differenza tra le più comuni strutture di rete neurali in cui il primo stadio è strutturato con un elevato numero di variabili in entrata. Nella nostra 'RNC' il primo stadio corrisponde solo ad un nodo e precisamente al comando di inizializzazione di analisi della rete denominato 'Demarcatore di Coerenza <math>\tau</math>', i successivi loop della rete, che permettono al clinico di terminare oppure il reiterare della rete, ( 1<sup>st</sup> loop open, 2<sup>st</sup> loop open,...... n<sup>st</sup> loop open) sono determinanti per concludere il processo di decriptazione ( Decrypted Code). Questo passaggio verrà spiegato più dettagliatamente a seguire nel capitolo.
*'''Input:''' By incoming trigger, we mean the cognitive process that the clinician implements as a function of the considerations received from previous statements, as has been pointed out in the chapters concerning the 'Medical language logic'. In our case, through the '<math>\tau</math> Consistency Demarcator, the neurological context was defined as suitable instead of the dental one pursuing a clinical diagnostic explanation of TMDs.
[[File:Immagine 17-12-22 alle 11.34.jpeg|center|500x500px|'''Figura 1:''' Rappresentazione grafica della 'RNC' proposto da Masticationpedia|frameless]]
** This trigger is of essential importance because it allows the clinician to point out the network analysis 'Initialization command' which will connect a large sample of data corresponding to the set trigger. To this essential 'Initialization command', as an algorithmic decryption key, is added the last closing command which is equally important as it depends on the intuition of the clinician who will consider the decryption process finished.
** In Figure 1 the structure of the 'CNN' is represented where the difference between the most common neural network structures can be noted and in which the first stage is structured with a high number of input variables. In our 'CNN' the first stage corresponds only to a node and precisely to the network analysis of 'Initialization command' called                    ' <math>\tau</math> Coherence Demarcator', the subsequent loops of the network, which allow the clinician to terminate or to reiterate the network, (1st loop open, 2st loop open,...... nst loop open) are decisive for concluding the decryption process ( Decrypted Code ). This step will be explained in more detail later in the chapter.
[[File:Immagine 17-12-22 alle 11.34.jpeg|center|500x500px|'''Figure 1:'''Graphical representation of the 'CNN' proposed by Masticationpedia|thumb]]




<center></center>
<center></center>
* '''Output:''' I dati in uscita dalla rete, che sostanzialmente corrispondono ad un precisa richiesta trigger cognitiva, restituisce un numero ampio di dati classificati e correlati alla keyword richiesta. Il clinico dovrà dedicare tempo e concentrazione per proseguire nella decriptazione del codice macchina. Abbiamo assistito, infatti, come seguendo le indicazioni dettate da criteri di ricerca come lo 'Research Diagnostic Criteria' (RDC) la nostra paziente Mary Poppins sia stata immediatamente categorizzata come 'TMDs' ed abbiamo anche suggerito il modo per ampliare le capacità diagnostiche in odontoiatria attraverso un modello 'fuzzy' che permetterebbe di spaziare in contesti diversi da quello proprio. Ciò mostra la complessità nel fare diagnosi differenziale e le difficoltà nel seguire un roadmap semeiotica classica perchè si è ancorati troppo al linguaggio verbale e poco ad una cultura quantistica dei sistemi biologici. Ciò sconfina nel concetto di linguaggio macchina e comando iniziale di decriptazione che andremo a spiegare brevemente nel prossimo paragrafo.
*'''Output:''' The outgoing data from the network, which substantially correspond to a precise cognitive trigger request, returns a large number of data classified and correlated to the requested keyword. The clinician will have to devote time and concentration to continue decrypting the machine code. In fact, we have witnessed how, following the indications dictated by research criteria such as the 'Research Diagnostic Criteria' (RDC), our patient Mary Poppins was immediately categorized as 'TMDs'. We have also suggested a way to expand diagnostic capabilities in dentistry through a 'fuzzy' model that would allow to range in contexts other than one's own. This shows the complexity in making differential diagnoses and the difficulties in following a classical semiotic roadmap because we are anchored too much to verbal language and too little to a quantum culture of biological systems. This borders on the concept of machine language and initialization decryption command that we will briefly explain in the next paragraph.


=== Comando di iniziazione ===
===Initiatialization command in the Cognitive Neural Network===
Per un momento immaginiamo che il cervello parli la lingua di un computer e non viceversa come avviene in ingegneria, per distinguere la già citata differenza tra linguaggio macchina e linguaggio verbale umano. Per scrivere una frase, una parola oppure una formula il computer non usa la modalità classica verbale (alfabeto) oppure la modalità decimale (numeri) con cui noi scriviamo formule matematiche ma un suo codice di linguaggio di 'scrittura' chiamato per il web codice html. Prendiamo come esempio la scrittura di una formula abbastanza complessa, essa si presenta al nostro cervello nel linguaggio verbale con cui noi abbiamo imparato a leggere una equazione matematica, nella seguente forma:  
For a moment let's imagine that the brain speaks the language of a computer and not vice versa as happens in engineering, to distinguish the aforementioned difference between machine language and human verbal language. To write a sentence, a word or a formula, the computer does not use the classic verbal mode (alphabet) or the decimal mode (numbers) with which we write mathematical formulas but its own 'writing' language code called html code for the web. Let's take as an example the writing of a fairly complex formula, it is presented to our brain in the verbal language with which we have learned to read a mathematical equation, in the following form:  


<blockquote><math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2)
<blockquote><math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2)
P(B=\beta|a=\alpha_2)</math>  
P(B=\beta|a=\alpha_2)</math>  


ed immaginiamo, lasciando spaziare la mente, che questa formula corrisponda al messaggio del Sistema Nervoso Centrale, come abbiamo anticipato, ed in particolare nella 'Trasmissione Efaptica' ancora da decriptare</blockquote>Il computer e dunque il cervello, per il nostro esempio metaforico, non conosce il linguaggio verbale o meglio è solo una convenzione generata per semplificare la comunicazione naturale, piuttosto ne ha uno suo proprio con cui scrivere la formula citata e nel linguaggio wiki testo ( con estensione .php) si presenta nel seguente modo rappresentato in figura 2:                <blockquote>[[File:Codice mod.png|alt=|center|frame|'''Figura 2:''' Wiki testo di una formula matematica. Notare il comando <nowiki><math> di inizializzazione ed il comando </math></nowiki> di chiusura dello script]]
and let us imagine, letting our minds wander, that this formula corresponds to the message of the Central Nervous System, as we have anticipated, in the 'Ephaptic Transmission' still to be decrypted.</blockquote>The computer and therefore the brain, for our metaphorical example, does not know verbal language or rather it is only a convention generated to simplify natural communication, rather it has its own one with which to write the formula mentioned and in the wiki text language (with extension .php) looks like this, represented in figure 2:                <blockquote>[[File:Codice mod.png|alt=|center|frame|'''Figura 2:''' Wiki text of a mathematical formula. Note the initialization <nowiki><math> command and the script exit </math></nowiki> command]]


come si può notare non c'entra nulla con il linguaggio verbale ed infatti, il cervello ha un suo proprio linguaggio macchina costituito non da vocali, consonanti e numeri bensì da potenziali d'azione, pacchetti d'onda, frequenze ed ampiezze, popoli elettrici, ecc. ciò che semplicemente osserviamo in un tracciato elettroencefalografico (EEG) e che rappresenta, appunto, i campi elettromagnetici sullo scalpo dell’attività dei dipoli e delle correnti ioniche cerebrali che si propagano nel volume encefalico. </blockquote>
as we can see it has nothing to do with verbal language and in fact, the brain has its own machine language made up not of vowels, consonants and numbers but of action potentials, wave packets, frequencies and amplitudes, electric dipoles , etc. what we simply observe in an electroencephalographic tracing (EEG) and which represents, precisely, the electromagnetic fields on the scalp of the dipoles's activity and the cerebral ionic currents that propagate in the encephalic volume. </blockquote>


La favola, però, non finisce qui perchè questo è un linguaggio di scrittura che nulla ha a che vedere con l'interprete del hardware del computer e dunque della struttura organica del cervello fatta di Centri con funzioni specializzate, circuiterie sinaptiche, polisinaptiche e quant'altro. Questo linguaggio di scrittura, dunque, deriva da un linguaggio macchina che non si modella nel comando '<nowiki><math>' piuttosto che '+2\sum_{\alpha_1'} ma deriva da un linguaggio  binario successivamente convertito in codice di scrittura html. Questo è definito come 'Linguaggio macchina' sia per il computer che per il cervello e si può simulare nel seguente modo</nowiki>
The story, however, does not end here because this is a writing language that has nothing to do with the interpreter of computer hardware and therefore with the organic structure of the brain made up of Centers with specialized functions, synaptic, polysynaptic circuitry and other. This writing language, therefore, derives from a machine language that is not modeled in the command '<nowiki><math>' rather than '+2\sum_{\alpha_1'} but derives from a binary language subsequently converted into html writing code. This is referred to as 'machine language' for both the computer and the brain and can be simulated as follows</nowiki>


<blockquote>'''00101011 00110010 01011100 01110011 01110101 01101101''' 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00111100 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01100011 01101111 01110011 01011100 01110100 01101000 01100101 01110100 01100001 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01110011 01110001 01110010 01110100 01111011 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01111101 00100000 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 00101001 00001010 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01100001 00111101 01011100 01100001 '''01101100 01110000 01101000 01100001 01011111 00110010 00101001'''</blockquote><blockquote>Ma cosa succede se in questo codice non fosse presente la seguente stringa 00101011 00110010 01011100 01110011 01110101 01101101 che corrisponde al comando '''<nowiki><math></nowiki>''' ?  </blockquote>Il messaggio sarebbe corrotto e la formula non si genererebbe per mancanza del più importante step quello di 'Inizializzazione del codice di comando', così pure se eliminassimo l'ultimo parte di codice 01101100 01110000 01101000 01100001 01011111 00110010 00101001, corrispondente alla chiusura dello script '''<nowiki></math></nowiki>''' la formula rimarrebbe corrotta ed indeterminata.  
<blockquote>'''00101011 00110010 01011100 01110011 01110101 01101101''' 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00111100 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01100011 01101111 01110011 01011100 01110100 01101000 01100101 01110100 01100001 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01110011 01110001 01110010 01110100 01111011 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01111101 00100000 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 00101001 00001010 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01100001 00111101 01011100 01100001 '''01101100 01110000 01101000 01100001 01011111 00110010 00101001'''</blockquote><blockquote>But what if the following string 00101011 00110010 01011100 01110011 01110101 01101101 which corresponds to the <nowiki><math> command is not present in this code?  </nowiki></blockquote>The message would be corrupted and the formula would not be generated due to lack of the most important step that of 'Initialization of the command code', as well as if we eliminated the last part of the code 01101100 01110000 01101000 01100001 01011111 00110010 00101001, corresponding to the closure of the script < /math> the formula would remain corrupted and indeterminate.  


In pratica senza il comando iniziale e finale la formula ben descritta nel seguente forma a noi comprensibile:
In practice, without the initial and final command, the formula is well described in the following form that is understandable to us:


<math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2)
<math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2)
P(B=\beta|a=\alpha_2)</math>
P(B=\beta|a=\alpha_2)</math>


si presenterebbe in un modo incomprensibile alla maggioranza delle persone.  
it would present itself in a way incomprehensible to most people.  


+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2) P(B=\beta|a=\alpha_2)
+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2) P(B=\beta|a=\alpha_2)<blockquote>Just as the lack of part of the binary code corrupts the representation of the formula, similarly the decryption of the machine language of the CNS is a source of vagueness and ambiguity of the verbal language and contextually of diagnostic error.</blockquote>


Cosí come la mancanza di parte del codice binario corrompe la rappresentazione della formula similmente la decriptazione del linguaggio macchina del SNC é fonte di vaghezza ed ambiguità del linguaggio verbale e contestualmente di errore diagnostico.
===Cognitive process===
=== Processo cognitivo ===
----The heart of the 'CNN' model lies in the cognitive process referred exclusively to the clinician who is at the helm while the network essentially remains the compass that warns of off course and/or suggests other alternative routes but the decision-making responsibility always refers to the clinician ( human mind). In this simple definition, we will perceive it better at the end of the chapter, the synergism 'Neural network' and 'Human cognitive process' of the clinician will be self-implementing because, on the one hand, the clinician is trained or better guided by the neural network (database), while, the last one will be trained on the latest updated scientific-clinical event. Basically, the definitive diagnosis will add an additional piece of information to the temporal base knowledge <math>Kb_t</math>. This model differs substantially from 'machine learning' just by observing the two models in their structural configuration (Figures 1 and 3).
----Il cuore del modello 'RNC' sta nel processo cognitivo riferito esclusivamente al clinico che ha in mano il timone mentre la rete rimane sostanzialmente la bussola che avverte del fuori rotta e/o suggerire altre rotte alternative ma la responsabilità decisionale è sempre riferita al clinico ( mente umana). In questo semplice definizione, lo percepiremo meglio a fine del capitolo, il sinergismo 'Rete neurale' e 'Processo cognitivo umano' del clinico sarà auto-implementante perchè da un lato il clinico viene addestrato o meglio guidato dalla rete neurale ( database) e quest'ultima verrà addestrata all'ultimo evento scientifico-clinico aggiornato. In sostanza la diagnosi definitiva  aggiungerà un dato informativo in più alla conoscenza di base temporale <math>Kb_t</math>. Questo modello differisce sostanzialmente dal 'machine Learning' già solo osservando  i due modelli nella loro configurazione strutturale ( Figura 1 e 3).
[[File:Joim12822-fig-0004-m.jpeg|alt=|left|thumb|200x200px|'''Figure 3:''' Graphic representation of an archetypal ANN in which it can be seen in the first stage of initialization where there are five input nodes<ref name=":1">G S Handelman, H K Kok, R V Chandra, A H Razavi, M J Lee, H Asadi. eDoctor: machine learning and the future of medicine.J Intern Med.2018 Dec;284(6):603-619.doi: 10.1111/joim.12822. Epub 2018 Sep 3.</ref> while in the 'CNN' model the first stage is composed of only one node. Follow text. ]]Figure 3 shows a typical neural network, also known as artificial NNs. These artificial NNs attempt to use multiple layers of calculations to mimic the concept of how the human brain interprets and draws conclusions from information.<ref name=":1" /> NNs are essentially mathematical models designed to handle complex and disparate information, and this algorithm's nomenclature comes from its use of synapse-like "nodes" in the brain.<ref>Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000; 19: 541–61.</ref> The learning process of a NN can be supervised or unsupervised. A neural network is said to learn in a supervised manner if the desired output is already targeted and introduced into the network by data training, while, unsupervised NN has no such pre-identified target outputs and the goal is to group similar units close together in certain areas of the range of values. The supervised module takes data (e.g., symptoms, risk factors, imaging and laboratory findings) for training on known outcomes and searches for different combinations to find the most predictive combination of variables. NN assigns more or less weight to certain combinations of nodes to optimize the predictive performance of the trained model.<ref>Abdi H. A neural network primer. J Biol Syst 1994; 02: 247–81.</ref>         
[[File:Joim12822-fig-0004-m.jpeg|alt=|left|thumb|200x200px|'''Figura 3:''' Rappresentazione grafica di una RNA archetipica in cui si può notare nel primo stadio di inizializzazione dove sono presenti cinque nodi di input<ref name=":1">G S Handelman, H K Kok, R V Chandra, A H Razavi, M J Lee, H Asadi. eDoctor: machine learning and the future of medicine.J Intern Med.2018 Dec;284(6):603-619.doi: 10.1111/joim.12822. Epub 2018 Sep 3.</ref> mentre nel modello 'RNC' il primo stadio è composto da un solo nodo. Segui testo. ]]Nella figura 3 viene rappresentato una tipica rete neurale, note anche come NN artificiali. Queste NN artificiali tentano di utilizzare più livelli di calcoli per imitare il concetto di come il cervello umano interpreta e trae conclusioni dalle informazioni.<ref name=":1" /> NN sono essenzialmente modelli matematici progettati per gestire informazioni complesse e disparate e la nomenclatura di questo algoritmo deriva dal suo uso di "nodi" simili alle sinapsi nel cervello.<ref>Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000; 19: 541–61.</ref> Il processo di apprendimento di un NN può essere supervisionato  o non supervisionato. Si dice che una rete neurale apprenda in modo supervisionato se l'output desiderato è già mirato e introdotto nella rete mediante l'addestramento dei dati mentre NN non supervisionato non ha tali output target preidentificati e l'obiettivo è raggruppare unità simili vicine in determinate aree del intervallo di valori. Il modulo supervisionato prende i dati (ad es. sintomi, fattori di rischio, risultati di laboratorio e di imaging) per l'addestramento su esiti noti e cerca diverse combinazioni per trovare la combinazione più predittiva di variabili. NN assegna più o meno peso a determinate combinazioni di nodi per ottimizzare le prestazioni predittive del modello addestrato.<ref>Abdi H. A neural network primer. J Biol Syst 1994; 02: 247–81.</ref>         


La figura 1, invece, corrisponde al modello 'RNC' proposto e si può notare come il primo stadio di acquisizione è composto da un solo nodo mentre le 'Machine learning' al primo nodo più variabili in entrata hanno maggiore è la 'Predizione' in uscita. Si tenga conto, come detto, che il primo nodo ha un importanza fondamentale perchè deriva già da un processo cognitivo clinico che ha condotto il 'Demarcatore di Coerenza <math>\tau</math>' a determinare una prima assoluta scelta di campo. Dal comando di inizializzazione, dunque, la rete neurale si evolve in una serie di stati composti da un numero elevato di nodi per poi terminare ad un primo step di uno o due nodi per poi reiterare in un successivo loop di più nodi fino a terminarsi nell'ultimo nodo conclusivo ( decriptazione del codice). Il processo di inizializzazione del primo nodo, l'ultimo ed il rieiterare del loop è esclusiva del processo cognitivo umano del clinico e non di un automatismo statistico della machine learning tanto meno di stadi 'Hidden'. Tutti i loop aperti e chiusi devo essere conosciuti dal clinico.     


Per un approfondimento sull'argomento è disponibile su Masticationpedia al capitolo '[[An artificially intelligent (or algorithm-enhanced) electronic medical record in orofacial pain]]'     


Ma vediamo nel dettaglio come si edifica una 'RNC'       
Figure 1, on the other hand, corresponds to the 'CNN' model proposed and it can be seen how the first stage of acquisition is composed of a single node while the 'Machine learning' at the first node, the more incoming variables have the greater the 'Prediction' in exit. As mentioned, it should be taken into account that the first node is of fundamental importance because it already derives from a clinical cognitive process that led the ' <math>\tau</math> Coherence Demarcator' to determine a first-ever choice of field. From the 'Initialization command', therefore, the neural network evolves in a series of states composed of a large number of nodes and then terminates at a first step of one or two nodes and then reiterates in a subsequent loop of several nodes until ending in the 'last conclusive node (decryption of the code). The initialization process of the first node, the last and the reiteration of the loop is exclusive to the human cognitive process of the clinician and not to a statistical automatism of machine learning, much less 'Hidden' stages. All open and closed loops must be known to the clinician.      


== Rete Neurale Cognitiva ==
For further information on the subject, it is available on Masticationpedia in the chapter 'An artificially intelligent (or algorithm-enhanced) electronic medical record in orofacial pain'
In questo paragrafo ci sembra doveroso spiegare il processo clinico seguito con il supporto della 'RNC' seguendo step by step le interrogazioni cognitive alla rete e l'analisi cognitiva eseguita sui dati in risposta dalla rete. La mappa è stata anche riportata in figura 4 con i links alle risposte della rete che posso essere visualizzate per una più consistente documentazione:


* '''Demarcatore di Coerenza <math>\tau</math>:''' Come abbiamo precedente descritto il primo stap è un comando di inizializzazione di analisi della rete che deriva, appunto, da una precedente elaborazione cognitiva delle asserzioni nel contesto odontoiatrico <math>\delta_n</math> e quello neurologico <math>\gamma_n</math> a cui lo 'Demarcatore di Coerenza <math>\tau</math>' ha dato un peso assoluto eliminando, di fatto, dal processo il contesto odontoiatrico <math>\delta_n</math>. Da quanto emerge dalle asserzioni neurologiche <math>\gamma_n</math> lo 'Stato' del Sistema Nervoso Trigeminale appare destrutturato evidenziando anomalie dei riflessi trigeminali per cui il comando di 'Inzializzazione' è lo '[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+&size=200 Trigeminal Reflex]' per andare <nowiki/>a testare il database ( Pubmed<nowiki/>). <nowiki/><nowiki/>
But let's see in detail how a 'CNN' is built
*'''1<sup>st</sup> loop open:''' Questo comando di 'Inizializzazione', perciò, viene considerato come input iniziale per il database Pubmed che risponde con 2.466 dati clinici e sperimentali a disposizione del clinico. L'apertura della prima vera analisi cognitiva viene elaborata proprio sull'analisi del primo risultato della 'RNC' corrispondente a 'Trigeminale Reflex'. In questa fase ci si rende conto che una discreta percentuale di dati rilevano una corrispondenza tra anormalità dei riflessi trigeminali e problematiche di demielinizzazione per cui il 1<sup>st</sup> loop open corrisponderà a: ' [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+&size=200 Demyelinating neuropathy]' che restituirà 14 dati sensibili. Dietro la scelta di questa key c'è un prpcesso cognitivo attivo e dinamico del clinico. Dalle asserzioni nel contesto neurologico è stata ipotizzato una patologia neuropatica in cui considerare anche l'aspetto demielinizzante.<nowiki/><nowiki/>
*'''2<sup>st</sup> loop o'''<nowiki/><nowiki/>'''pen:''' Il processo continua focalizzando sempre più dettagliatamente le keywords che corrispondo al nostro dato elettrofisiologico risultato anomalo e cioè la latenza del jaw jerk. Questo input corrispondente a [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+latency 'Latency]' e  restituisce 6 dati sensibili su cui elaborare un ulteriore reiterare del loop.
*'''3<sup>st</sup> loop open:''' Nelle asserzioni del contesto neurologico si osserva una anomalia anche di ampiezza del jaw jerk oltre che di latenza. Questo 3<sup>st</sup> loop open corrisponde a ' [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+latency+amplitude Amplitude]' e restituisce solo 2 dati su cui soffermarci per decidere la keyword per reiterare il loop oppure chiudere definitivamente il processo.  Dal risultato si evince un articolo che descrive la valutazione elettrofisiologica delle neuropatie craniche che è stato considerato di basso peso specifico per i nostri scopi mentre l'altro articolo mette in evidenza alcune metodologie trigeminali per testare latenza, ampiezza dei muscoli masticatori tra cui H-reflex.
*'''4<sup>st</sup> loop closed:''' Il processo, perciò, continua inserendo la keywords algoritmica ' [https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex H-reflex] ' che restituisce 3.701 dati scientifico clinici.
*'''5<sup>st</sup> loop open:''' Le anomalie evidenziate sono state principalmente verificate sui masseteri per cui si deduce che nel campione interrogato del 4<sup>st</sup> loop closed possano essere intercettati keywords riguardanti il muscolo '[https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex+masseter+muscle&size=200 Masseter muscle]', da qui il 5<sup>st</sup> loop open che restituisce 30 dati disponibili per la 'RNC'
*'''6<sup>st</sup> loop open:''' Noi, però, non sappiamo se il danno neuropatico sia localizzato esclusivamente sul muscolo massetere oppure coinvolga anche il muscolo temporale per cui una ulteriore keywords algoritmica sarebbe la ' [https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex+masseter+muscle+temporal+muscle&size=200 Temporal muscle]' che restituisce 8 dati sensibili.
*'''7<sup>st</sup> loop open:''' Da una analisi acurata di questo 7<sup>st</sup> loop open ci si domanda se queste anomalie elettrofisiologiche possano essere evidenziate nei pazienti con sclerosis ed essendo presente nella storia clinica della paziente, una precedente diagnosi di 'Morfea' si è optato per interrogare la 'Rete' di un ulteriore keyword e focalizzata in 'Sclerosi' che ha dato un solo dato sensibile '[https://pubmed.ncbi.nlm.nih.gov/31164256/ H-refex eteronima sul muscolo temporale nei pazienti con Sclerosi Laterale Amiotrofica].
*'''8<sup>st</sup> loop closed:''' In questo singolo nodo il clinico potrebbe terminare il loop ma non avrebbe risolto nulla perchè non si è giunti ancora alla decodifica del messaggio criptato. Da notare che la metodica elettrofisiologica denominata 'H-reflex eteronoma' è in grado di evidenziare anomalie di risposta dal muscolo temporale per cui si è continuato il loop inserendo la seguente keyword specifica, ' [https://pubmed.ncbi.nlm.nih.gov/?term=Temporal+muscle+abnormal+response&size=200 Temporal muscle abnormal response]' che restituisce 137 dati.
*'''9<sup>st</sup> loop open:''' Studiando i 137 articoli apparsi in Pubmed il clinico intuisce che le anormalità di risposta nel muscolo temporale attraverso il test della H-reflex dipendono da uno spread della corrente da stimolo nell'arsone destrutturato e quindi approfondisce ulteriormente il loop interrogando la rete di un ulteriore keyword la ' Lateral spera impulses' che chiude definitivamente il processo cognitivo della 'Rete Neurale' con un ravvicinato articolo alle nostre ipotesi cliniche che riguardano la paziente Mary Poppins e cioè '[https://pubmed.ncbi.nlm.nih.gov/27072096/ '''Ephaptic transmission''' is the origin of the abnormal muscle response seen in hemifacial spasm]'<center>[[File:Immagine 17-12-22 alle 11.44.jpeg|center|600x600px]]


==Cognitive Neural Network==
In this paragraph it seems necessary to explain the clinical process followed with the support of the 'CNN' following step by step the cognitive queries to the network and the cognitive analysis performed on the data in response from the network. The map has also been shown in figure 4 with links to the network responses that can be viewed for more consistent documentation:
*'''<math>\tau</math> Coherence Demarcator:''' As we have previously described, the first step is a network analysis initialization command that derives, in fact, from a previous cognitive processing of the assertions in the dental context <math>\delta_n</math> and the neurological one <math>\gamma_n</math> to which the ' <math>\tau</math> Coherence Demarcator' gave absolute weight by, effectively, eliminating the dental context <math>\delta_n</math> from the process. From what emerges from the neurological assertions <math>\gamma_n</math> the 'State' of the Trigeminal Nervous System appears unstructured highlighting anomalies of the trigeminal reflexes for which the 'Initialization' command will be the '[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+&size=200 Trigeminal Reflex]' to go and<nowiki/> test the database (Pubmed).
*<nowiki/><nowiki/>'''1<sup>st</sup> loop open:''' This 'Initialization command', therefore, is considered as initial input for the Pubmed database which responds with 2,466 clinical and experimental data available to the clinician. The opening of the first true cognitive analysis is elaborated precisely on the analysis of the first result of the 'CNN' corresponding to 'Trigeminal Reflex'. In this phase we realize that a discrete percentage of data reveal a correspondence between trigeminal reflex abnormalities and demyelination problems, therefore the 1<sup>st</sup> loop open will correspond to: '[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+&size=200 Demyelinating neuropathy]<nowiki>''</nowiki> which will return 14 sensitive data. Behind the choice of this key there is an active and dynamic cognitive process of the clinician. From the assertions in the neurological context, a neuropathic pathology was hypothesized in which the demyelinating aspect should also be co<nowiki/><nowiki/>nsidered.
*'''2<sup>st</sup> loop o'''<nowiki/><nowiki/>'''pen:''' The process continues by focusing in ever greater detail on the keywords that correspond to our electrophysiological anomalous result data, i.e. the latency of the jaw jerk. This input corresponding to '[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+latency Latency]' returns 6 sensitive data on which to process a further iteration of the loop.
* '''3<sup>st</sup> loop open:''' In the statements of the neurological context, an anomaly is also observed in the amplitude of the jaw jerk as well as in latency. This 3<sup>st</sup> open loop corresponding to '[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+latency+amplitude Amplitude]' returns only 2 data points on which to dwell to decide the keyword to reiterate the loop or definitively close the process. The result shows an article describing the electrophysiological evaluation of cranial neuropathies that was considered of low specific weight for our purposes while the other article highlights some trigeminal methodologies to test latency, amplitude of masticatory muscles including H-reflex .
*'''4<sup>st</sup> loop closed:''' The process, therefore, continues by inserting the algorithmic keyword '[https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex H-reflex] ' which returns 3,701 clinical scientific data.
*'''5<sup>st</sup> loop open:''' The anomalies highlighted were mainly verified on the masseters so it can be deduced that keywords concerning the '[https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex+masseter+muscle&size=200 Masseter muscle]' can be intercepted in the interrogated sample of the 4<sup>st</sup> closed loop, hence the 5<sup>st</sup>  open loop which returns 30 data available for the 'CNN'
*'''6<sup>st</sup> loop open:''' We, however, do not know whether the neuropathic damage is localized exclusively on the masseter muscle or also involves the temporal muscle, therefore another algorithmic keyword would be the '[https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex+masseter+muscle+temporal+muscle&size=200 Temporal muscle]' which returns 8 sensitive data.
*'''7<sup>st</sup> loop open:''' From a careful analysis of this 7th open loop one wonders if these electrophysiological anomalies can be highlighted in patients with sclerosis and being present in the patient's clinical history, a previous diagnosis of 'Morphea' it was opted to interrogate the 'Network' of a another keyword focused on 'Sclerosis' which gave only one sensitive data '[https://pubmed.ncbi.nlm.nih.gov/31164256/ Heteronymous H reflex in temporal muscle as sign of hyperexcitability in ALS patients]
*'''8<sup>st</sup> loop closed:''' In this single node the clinician could terminate the loop but would not have solved anything because the decoding of the encrypted message has not yet been achieved. It should be noted that the electrophysiological method called 'heteronomous H-reflex' is able to highlight response anomalies from the temporal muscle for which the loop was continued by inserting the following specific keyword, ' [https://pubmed.ncbi.nlm.nih.gov/?term=Temporal+muscle+abnormal+response&size=200 Temporal muscle abnormal response]' which returns 137 data.
*'''9<sup>st</sup> loop open:''' By studying the 137 articles appeared in Pubmed, the clinician intuits that the response abnormalities, in the temporal muscle through the H-reflex test, depend on a spread of the stimulus current in the unstructured axon and therefore further investigates the loop by interrogating the network for a further keyword the 'Lateral spread impulses' which, definitively, closes the cognitive process of the 'Neural Network' with a close article, the '[https://pubmed.ncbi.nlm.nih.gov/27072096/ '''Ephaptic transmission''' is the origin of the abnormal muscle response seen in hemifacial spasm]'<center>[[File:Immagine 17-12-22 alle 11.44.jpeg|center|600x600px|thumb|'''Figure 4:''' The active links of the 'CNN' highlighted in the template correspond to the 'Pubmed' database and can be documented.]]




<center></center>
<center></center>


== Conclusione ==
==Conclusion==
Come dimostrato la definizione di 'Spasmo Emimasticatorio' nella nostra paziente Mary Poppins non è stato un percorso clinicamente semplice, tuttavia, considerando i temi presentati nei capitoli precedente di Masticationpedia abbiamo a disposizione almeno tre elementi di supporto:
As demonstrated, the definition of Hemasticatory spasm in our patient Mary Poppins was not a clinically simple process, however, considering the topics presented in the previous chapters of Masticationpedia we have at least three elements of support available:
 
# Una visione di 'Probabilità quantistica' dei fenomeni fisico chimici nei sistemi complessi biologici di cui si parlerà diffusamente nei capitoli specifici.
# Un linguaggio più formale e meno vago rispetto al linguaggio naturale che indirizza l'analisi diagnostica al primo nodo di input della 'RNC' attraverso lo 'Demarcatore di Coerenza <math>\tau</math>' descritto nel capitolo [[1° Clinical case: Hemimasticatory spasm|'1° Clinical case: Hemimasticatory spasm]]'
# Il processo della 'RNC' che essendo gestito e guidato esclusivamente dal clinico diviene un mezzo imprenscindibile per la diagnosi definitiva.
La 'RNC', infatti, è il risultato di un profondo processo cognitivo che si esegue su ogni passaggio dell'analisi in cui il clinico pesa le proprie intuizioni, chiarisce i propri dubbi, valuta i referti, considera i contesti ed avanza step by step confrontandosi con il risultato della risposta proveniente dal database che nel nostro caso è Pubmed che sostanzialmente rappresenta l'attuale livello di conoscenza di base <math>KB_t</math> al tempo dell'interrogazione ed il <math>KB_c</math> nei più ampi contesti specialistici.


Una rappresentare lineare di questo processo cognitivo etichettata come <math>RNC_1 </math>con le dovute annotazioni potrebbe essere il seguente:<blockquote>
#A vision of 'Quantum Probability' of physical-chemical phenomena in complex biological systems which will be discussed extensively in the specific chapters.
#A more formal and less vague language than the natural language that directs the diagnostic analysis to the first input node of the 'CNN' through the '<math>\tau</math> Coherence Demarcator' described in the chapter '[[1° Clinical case: Hemimasticatory spasm - en|1st Clinical case: Hemimasticatory spasm]]'
#The 'CNN' process which, being managed and guided exclusively by the clinician, becomes an essential means for the definitive diagnosis.
The 'CNN', in fact, is the result of a profound cognitive process that is performed on each step of the analysis in which, the clinician weighs his intuitions, clarifies his doubts, evaluates the reports, considers the contexts and advances step by step confronting the result of the answer coming from the Pubmed database.  Substantially the Pubmed database represents the current level of basic knowledge <math>KB_t</math> at question time and the <math>KB_c</math> in the broadest specialist contexts.


A linear representation of this cognitive process labeled as <math>CNN_1 </math> with the necessary annotations it could be the following:<blockquote>


<math>RNC_1=\sum ( </math>[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+&size=200 Trigeminal Reflex],[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+&size=200 Demyelinating neuropathy], [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+latency Latency],[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+latency+amplitude Amplitude],[https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex '''H-reflex'''], [https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex+masseter+muscle&size=200 Masseter muscle], [https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex+masseter+muscle+temporal+muscle&size=200 Temporal muscle], [https://pubmed.ncbi.nlm.nih.gov/31164256/ H-refex eteronima sul muscolo temporale nei pazienti con Sclerosi Laterale Amiotrofica],[https://pubmed.ncbi.nlm.nih.gov/?term=Temporal+muscle+abnormal+response&size=200 Temporal muscle abnormal response]<math>)</math><math>\longrightarrow</math>[https://pubmed.ncbi.nlm.nih.gov/27072096/ '''Ephaptic transmission is the origin of the abnormal muscle response seen in hemifacial spasm''']</blockquote>Le annotazioni da rimarcare sono sostanzialmente due: la prima è l'inderogabile individuazione dell'input di inizializzazione che deriva dal contesto scelto attraverso il 'Demarcatore di Coerenza <math>\tau</math> e la seconda l'ordine delle keywords cognitivamente selezionate.
<math>CNN_1=\sum ( </math>[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+&size=200 Trigeminal Reflex],[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+&size=200 Demyelinating neuropathy], [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+latency Latency],[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+latency+amplitude Amplitude],[https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex '''H-reflex'''], [https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex+masseter+muscle&size=200 Masseter muscle], [https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex+masseter+muscle+temporal+muscle&size=200 Temporal muscle], [https://pubmed.ncbi.nlm.nih.gov/31164256/ Heteronymous H reflex in temporal muscle as sign of hyperexcitability in ALS patients],[https://pubmed.ncbi.nlm.nih.gov/?term=Temporal+muscle+abnormal+response&size=200 Temporal muscle abnormal response]<math>)</math><math>\longrightarrow</math>[https://pubmed.ncbi.nlm.nih.gov/27072096/ '''Ephaptic transmission is the origin of the abnormal muscle response seen in hemifacial spasm''']</blockquote>There are essentially two annotations to observe: the first is the mandatory identification of the 'Initialization command' that derives from the context chosen through the '<math>\tau</math> Coherence Demarcator' and the second the order of the cognitively selected keywords.


{{Q2|Cosa succede, infatti, alla 'RNC' se si considera  il contesto odontoiatrico inserendo come input di inizializzazione la keyword ' Temporomandibular Disorders' mantenendo tutto il resto immutato?}}
{{Q2|In fact, what happens to the 'CNN' if we consider the dental context by inserting the keyword 'Temporomandibular Disorders' as an initialization input, keeping everything else unchanged?}}


Contrassegnando la rete come <math>RNC_2 </math> con un input di inizializzazione odontoiatrico ( Temporomandibular disorders) nel modo seguente:<blockquote><math>RNC_2=\sum ( </math>[https://pubmed.ncbi.nlm.nih.gov/?term=Temporomandibular+disorders+&filter=dates.1970-2022 Temporomandibular Disorders],[https://pubmed.ncbi.nlm.nih.gov/?term=Temporomandibular+disorders+trigeminal+reflex&filter=dates.1970-2022 Trigeminal reflex],  [https://pubmed.ncbi.nlm.nih.gov/?term=Temporomandibular+disorders+trigeminal+reflex+Demyelinatying+neuropathy&filter=dates.1970-2022 Demyelinaying neuropathy], [https://pubmed.ncbi.nlm.nih.gov/1520092/ Latency<math>\longrightarrow</math>'''Side asymmetry of the jaw jerk in human craniomandibular dysfunction''']</blockquote>Il messaggio risulta corrotto, come precedente esposto riguardo la formula matematica, in quanto l'input di comando di inizializzazione ( Tempormandibular disorders) indirizza la rete per un insieme di dati, ben 20.514, che perdono le connessioni con una parte di sottoinsiemi. Pur mantenendo il resto della RNC simile alla precedente ( contesto neurologico) la rete si ferma alla keyword 'latency' mostrando un solo articolo scientifico che riguarda, ovviamente, la latenza del jaw jerk ma non correlata a disturbi neuropatici.( figura 5) L'errore nella scelta dell'input di comando di inizializzazione del processo RNC non solo corrompe il messaggio da decriptare ma rende vano tutto il lavoro a monte di analisi delle asserzioni cliniche discusso nei capitoli di logica di linguaggio. 
By marking the network as <math>CNN_2 </math> with a dental initialization input ( Temporomandibular disorders) as follows:


[[File:Temporomandibular disorders trigeminal reflex demyelinatying neuropathy latency amplitude.jpg|center|thumb|'''Figura 5:''' Fine del loop della 'RNC' con un input di inizializzazione di 'Tempororomandibular Disorders']] 
<blockquote><math>CNN_2=\sum ( </math>[https://pubmed.ncbi.nlm.nih.gov/?term=Temporomandibular+disorders+&filter=dates.1970-2022 Temporomandibular Disorders],[https://pubmed.ncbi.nlm.nih.gov/?term=Temporomandibular+disorders+trigeminal+reflex&filter=dates.1970-2022 Trigeminal reflex],  [https://pubmed.ncbi.nlm.nih.gov/?term=Temporomandibular+disorders+trigeminal+reflex+Demyelinatying+neuropathy&filter=dates.1970-2022 Demyelinaying neuropathy], [https://pubmed.ncbi.nlm.nih.gov/1520092/ Latency<math>\longrightarrow</math>'''Side asymmetry of the jaw jerk in human craniomandibular dysfunction''']</blockquote>The message is corrupted, as explained above regarding the mathematical formula, as the 'Initialization command input' ( Tempormandibular disorders) directs the network for a set of data, no less than 20,514, which lose connections with a part of subsets. While maintaining the rest of the CNN similar to the previous one (neurological context) the network stops at the keyword 'latency'. In fact, only one scientific article was extracted and obviously concerns the latency of the jaw jerk but is not related to neuropathic disorders. (figure 5) The error, in the choice of the initialization command input of the <math>CNN </math> process not only corrupts the message to be decrypted but renders vain all the upstream work of analysis of the clinical assertions discussed in the chapters of language logic. 


Cambiando l'ordine, invece,  delle keywords in un esatto percorso cognitivo come quello neurologico sostanzialmente restituisce gli stessi risultati del precedente purché l'input di comando di inizializzazione sia perfettamente centrato, come si può notare nel seguente simulazione etichettata con <math>RNC_3 </math>:
[[File:Temporomandibular disorders trigeminal reflex demyelinatying neuropathy latency amplitude.jpg|center|thumb|'''Figure 5:''' Ending the 'CNN' loop with an initialization input of 'Tempororomandibular Disorders']] 


<math>RNC_3=\sum ( </math>[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+ Trigeminal reflex], [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude amplitude] [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude+latency latency] [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude+latency+Demyelinating+neuropathy demyelinating neuropathy] <math>\longrightarrow</math> [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude+latency+Demyelinating+neuropathy '''H-reflex''']................ 
However, changing the order of the keywords in an exact cognitive path such as the neurological one, essentially, returns the same results as the previous one provided that the initialization command input is perfectly focalized, as can be seen in the following simulation labeled with <math>CNN_3 </math>:  


e si riconnette al precedente fino a chiudersi nello output 'Ephaptic transmission is the origin of the abnormal muscle response seen in hemifacial spasm' ( Figura 6) 
<math>CNN_3=\sum ( </math>[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+ Trigeminal reflex], [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude amplitude] [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude+latency latency] [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude+latency+Demyelinating+neuropathy demyelinating neuropathy] <math>\longrightarrow</math> [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude+latency+Demyelinating+neuropathy '''H-reflex''']................
[[File:Ephaptic trasmission.jpg|center|thumb|'''Figura 6:''' Processo della 'RNC' con l'ordine delle keywords cambiato. ]]
Da notare che se questo capitolo fosse stato pubblicato su una rivista Scientifica Internazionale impattata ( Inpact Factor) lo <math>KB_t</math> e contestualmente una ipotetica 'machine learning' si sarebbero arricchiti di un nuovo contenutoo quello della diagnosi di 'Spasmo emimasticatorio' definito seguendo la metodica elettrofisiologica della H-reflex eteronima. Questo conclusione ritornerà utile quando ripeteremo lo stesso procedimento per altri casi clinici in cui lo <math>KB_t</math> è aggiornato all'output del database.  


Per approfondire  la descrizione metodologica della 'Heteronimous H-Reflex' si rimanda il lettore a seguire la [[Appendice 1 - it|Appendice 1]].    
and reconnects to the previous one until closing in the output 'Ephaptic transmission is the origin of the abnormal muscle response seen in hemifacial spasm' (Figure 6) 
[[File:Ephaptic trasmission.jpg|center|thumb|'''Figure 6:''' Process of 'CNN' with order of keywords changed. ]]
Note that if this chapter had been published in an impacted international scientific journal (Impact Factor) the <math>KB_t</math> and contextually a hypothetical 'machine learning' would have been enriched with a new content or that of the diagnosis of 'Hemimasticatory spasm' defined following the electrophysiological method of the heteronymous H-reflex. This conclusion will come in handy when we repeat the same procedure for other clinical cases in which the <math>KB_t</math> is updated to the database output.          


=== Bibliography ===
===Bibliography===
<references />
<references />

Latest revision as of 16:48, 19 October 2024

Encrypted code: Ephaptic transmission


 

Masticationpedia

 

Abstract: In this chapter, we explore the cognitive process and methodology used to diagnose a complex neuromotor condition, Hemimasticatory Spasm, in a patient referred to as "Mary Poppins." Despite the apparent simplicity of the diagnosis, the complexity of biological systems and the limitations of traditional deterministic medical approaches led to a decade-long delay in identifying the correct condition. This case underscores the need for advanced diagnostic models capable of integrating multiple variables and probabilistic approaches.

We introduce the Cognitive Neural Network (CNN), a clinician-guided model designed to support diagnosis by iteratively analyzing input data and generating context-based outputs. Unlike machine learning models, the CNN is not reliant on pre-trained data but instead adapts based on real-time cognitive processes initiated by the clinician, making it more suited for complex, real-world clinical environments. The CNN model assists the clinician in decrypting the Central Nervous System's (CNS) encrypted signals by guiding the diagnostic process through a series of iterative cognitive steps, ultimately leading to the identification of the patient's condition.

Through this model, the chapter demonstrates how integrating a dynamic neural network model with human clinical expertise can overcome the limitations of classical probability models, such as those anchored in verbal symptoms and deterministic approaches. The chapter highlights the importance of quantum probability in understanding complex biological systems and discusses how the CNN, guided by key elements such as the " Coherence Demarcator," helps to differentiate between competing diagnostic hypotheses.

Using the Hemimasticatory Spasm case as an example, the CNN is presented as a tool that leverages both cognitive intuition and structured data analysis to produce a final, accurate diagnosis. This model lays the groundwork for broader applications in clinical practice, where cognitive processes are central to handling complex diagnostic challenges.

Introduction

In the chapter '1st Clinical case: Hemimasticatory spasm' we immediately reached a conclusion bypassing all the cognitive, clinical and scientific process which underlies the diagnostic definition but it is not that simple otherwise our poor patient Mary Poppins, would not have had to wait 10 years for the correct diagnosis.

It should be emphasized that it is not a question of negligence on the part of clinicians rather of the complexity of 'biological systems' and above all of a mindset still anchored to a 'classical probability'. The 'Classical probability' categorizes healthy and diseased phenotypes according to symptoms and signs sampled clinicians instead of probing the 'State' of the system in the temporal evolution. This concept, anticipated in the chapter 'Logic of medical language: Introduction to quantum-like probability in the masticatory system' and in 'Conclusions on the status quo in the logic of medical language regarding the masticatory system' has laid the foundations for a medical language more articulated and less deterministic, mainly focused on the 'State' of the 'Mesoscopic System' whose purpose is, essentially, to decrypt the message in machine language generated by the Central Nervous System. We will assist in the description of other clinical cases that will be reported in the next Masticationpedia chapters.

This model, which we propose with the term 'Cognitive Neural Network' abbreviated as 'CNN' is a dynamic cognitive intellectual process of the clinician who interrogates the network for self-training. The 'CNN' is not a 'Machine Learning' because while the latter must be trained by the clinician, with statistical and prediction adjustments, the 'CNN' trains the clinician or rather directs the clinician to the diagnosis while always being questioned following a logical human, hence the term 'Cognitive'.

In fact, some classic machine learning models, whose training in the laboratory gives positive results, fail when applied to the real context. This is typically attributed to a mismatch between the datasets the machine was trained with and the data it encounters in the real world. A practical example of this can be represented by the conflict of assertions encountered in the diagnostic process of our patient Mary Poppins between the dental and neurological context, which only the support of the coherence demarcator (cognitive process) managed to solve.

One of the limits of machine learning, therefore, is known as "data shift",[1] or "data movement" and another underlying cause of the failure of some models outside the laboratory, is the "subspecification"[2][3] so much so that the attempt to build an algorithm-enhanced electronic medical record (EMR) system, designed specifically for use in a cancer center, was a notable failure at an estimated cost of $39,000,000 USD. This effort was a 2012 partnership between M.D. Anderson Partners and IBM Watson in Houston, Texas.[4] Early promotional news describing the project stated that the plan was to combine genetic data, pathology reports with physicians' notes and relevant journal articles to help doctors come up with diagnoses and treatments. However, five years later, in February 2017, M.D. Anderson announced that he had closed the project because, after several years of trying, he hadn't produced a tool for use with patients that was ready to move beyond pilot testing.

«Fascinating and provocative, explain to me in detail»
(... the model is essentially simple in its cognitive complexity)

In essence, the encrypted machine language message sent out by the Central Nervous System in the 10 years of illness of our patient Mary Poppins was interpreted, through verbal language, as Orofacial Pain from Temporomandibular Disorders'. We have remarked several times, however, that human verbal language is distorted by vagueness and ambiguity therefore, not being a formal language such as mathematical language, it can generate diagnostic errors. The message in machine language sent out by the Central Nervous System to be searched for is not pain (pain is a verbal language) but the 'Anomaly of System State' in which the organism was in that time period. Hence the shift from the semiotics of the symptom and the clinical sign to the 'System Logic' which, through 'System's Theory' models, quantify the system's responses to incoming stimuli, even in healthy subjects.

All this conceptuality is replicated in the proposed 'CNN' model by dividing the process into incoming triggers (Input) and outgoing data (Output) to then be reiterated in a loop managed cognitively by the clinician up to the generation of a single node useful for the definitive diagnosis. The model basically breaks down as follows:

  • Input: By incoming trigger, we mean the cognitive process that the clinician implements as a function of the considerations received from previous statements, as has been pointed out in the chapters concerning the 'Medical language logic'. In our case, through the ' Consistency Demarcator, the neurological context was defined as suitable instead of the dental one pursuing a clinical diagnostic explanation of TMDs.
    • This trigger is of essential importance because it allows the clinician to point out the network analysis 'Initialization command' which will connect a large sample of data corresponding to the set trigger. To this essential 'Initialization command', as an algorithmic decryption key, is added the last closing command which is equally important as it depends on the intuition of the clinician who will consider the decryption process finished.
    • In Figure 1 the structure of the 'CNN' is represented where the difference between the most common neural network structures can be noted and in which the first stage is structured with a high number of input variables. In our 'CNN' the first stage corresponds only to a node and precisely to the network analysis of 'Initialization command' called ' Coherence Demarcator', the subsequent loops of the network, which allow the clinician to terminate or to reiterate the network, (1st loop open, 2st loop open,...... nst loop open) are decisive for concluding the decryption process ( Decrypted Code ). This step will be explained in more detail later in the chapter.
Figure 1:Graphical representation of the 'CNN' proposed by Masticationpedia


  • Output: The outgoing data from the network, which substantially correspond to a precise cognitive trigger request, returns a large number of data classified and correlated to the requested keyword. The clinician will have to devote time and concentration to continue decrypting the machine code. In fact, we have witnessed how, following the indications dictated by research criteria such as the 'Research Diagnostic Criteria' (RDC), our patient Mary Poppins was immediately categorized as 'TMDs'. We have also suggested a way to expand diagnostic capabilities in dentistry through a 'fuzzy' model that would allow to range in contexts other than one's own. This shows the complexity in making differential diagnoses and the difficulties in following a classical semiotic roadmap because we are anchored too much to verbal language and too little to a quantum culture of biological systems. This borders on the concept of machine language and initialization decryption command that we will briefly explain in the next paragraph.

Initiatialization command in the Cognitive Neural Network

For a moment let's imagine that the brain speaks the language of a computer and not vice versa as happens in engineering, to distinguish the aforementioned difference between machine language and human verbal language. To write a sentence, a word or a formula, the computer does not use the classic verbal mode (alphabet) or the decimal mode (numbers) with which we write mathematical formulas but its own 'writing' language code called html code for the web. Let's take as an example the writing of a fairly complex formula, it is presented to our brain in the verbal language with which we have learned to read a mathematical equation, in the following form:

and let us imagine, letting our minds wander, that this formula corresponds to the message of the Central Nervous System, as we have anticipated, in the 'Ephaptic Transmission' still to be decrypted.

The computer and therefore the brain, for our metaphorical example, does not know verbal language or rather it is only a convention generated to simplify natural communication, rather it has its own one with which to write the formula mentioned and in the wiki text language (with extension .php) looks like this, represented in figure 2:

Figura 2: Wiki text of a mathematical formula. Note the initialization <math> command and the script exit </math> command

as we can see it has nothing to do with verbal language and in fact, the brain has its own machine language made up not of vowels, consonants and numbers but of action potentials, wave packets, frequencies and amplitudes, electric dipoles , etc. what we simply observe in an electroencephalographic tracing (EEG) and which represents, precisely, the electromagnetic fields on the scalp of the dipoles's activity and the cerebral ionic currents that propagate in the encephalic volume.

The story, however, does not end here because this is a writing language that has nothing to do with the interpreter of computer hardware and therefore with the organic structure of the brain made up of Centers with specialized functions, synaptic, polysynaptic circuitry and other. This writing language, therefore, derives from a machine language that is not modeled in the command '<math>' rather than '+2\sum_{\alpha_1'} but derives from a binary language subsequently converted into html writing code. This is referred to as 'machine language' for both the computer and the brain and can be simulated as follows

00101011 00110010 01011100 01110011 01110101 01101101 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00111100 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01100011 01101111 01110011 01011100 01110100 01101000 01100101 01110100 01100001 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01110011 01110001 01110010 01110100 01111011 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01111101 00100000 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 00101001 00001010 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01100001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 00101001

But what if the following string 00101011 00110010 01011100 01110011 01110101 01101101 which corresponds to the <math> command is not present in this code?

The message would be corrupted and the formula would not be generated due to lack of the most important step that of 'Initialization of the command code', as well as if we eliminated the last part of the code 01101100 01110000 01101000 01100001 01011111 00110010 00101001, corresponding to the closure of the script < /math> the formula would remain corrupted and indeterminate.

In practice, without the initial and final command, the formula is well described in the following form that is understandable to us:

it would present itself in a way incomprehensible to most people.

+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2) P(B=\beta|a=\alpha_2)

Just as the lack of part of the binary code corrupts the representation of the formula, similarly the decryption of the machine language of the CNS is a source of vagueness and ambiguity of the verbal language and contextually of diagnostic error.

Cognitive process


The heart of the 'CNN' model lies in the cognitive process referred exclusively to the clinician who is at the helm while the network essentially remains the compass that warns of off course and/or suggests other alternative routes but the decision-making responsibility always refers to the clinician ( human mind). In this simple definition, we will perceive it better at the end of the chapter, the synergism 'Neural network' and 'Human cognitive process' of the clinician will be self-implementing because, on the one hand, the clinician is trained or better guided by the neural network (database), while, the last one will be trained on the latest updated scientific-clinical event. Basically, the definitive diagnosis will add an additional piece of information to the temporal base knowledge . This model differs substantially from 'machine learning' just by observing the two models in their structural configuration (Figures 1 and 3).

Figure 3: Graphic representation of an archetypal ANN in which it can be seen in the first stage of initialization where there are five input nodes[5] while in the 'CNN' model the first stage is composed of only one node. Follow text.

Figure 3 shows a typical neural network, also known as artificial NNs. These artificial NNs attempt to use multiple layers of calculations to mimic the concept of how the human brain interprets and draws conclusions from information.[5] NNs are essentially mathematical models designed to handle complex and disparate information, and this algorithm's nomenclature comes from its use of synapse-like "nodes" in the brain.[6] The learning process of a NN can be supervised or unsupervised. A neural network is said to learn in a supervised manner if the desired output is already targeted and introduced into the network by data training, while, unsupervised NN has no such pre-identified target outputs and the goal is to group similar units close together in certain areas of the range of values. The supervised module takes data (e.g., symptoms, risk factors, imaging and laboratory findings) for training on known outcomes and searches for different combinations to find the most predictive combination of variables. NN assigns more or less weight to certain combinations of nodes to optimize the predictive performance of the trained model.[7]


Figure 1, on the other hand, corresponds to the 'CNN' model proposed and it can be seen how the first stage of acquisition is composed of a single node while the 'Machine learning' at the first node, the more incoming variables have the greater the 'Prediction' in exit. As mentioned, it should be taken into account that the first node is of fundamental importance because it already derives from a clinical cognitive process that led the ' Coherence Demarcator' to determine a first-ever choice of field. From the 'Initialization command', therefore, the neural network evolves in a series of states composed of a large number of nodes and then terminates at a first step of one or two nodes and then reiterates in a subsequent loop of several nodes until ending in the 'last conclusive node (decryption of the code). The initialization process of the first node, the last and the reiteration of the loop is exclusive to the human cognitive process of the clinician and not to a statistical automatism of machine learning, much less 'Hidden' stages. All open and closed loops must be known to the clinician.

For further information on the subject, it is available on Masticationpedia in the chapter 'An artificially intelligent (or algorithm-enhanced) electronic medical record in orofacial pain'

But let's see in detail how a 'CNN' is built

Cognitive Neural Network

In this paragraph it seems necessary to explain the clinical process followed with the support of the 'CNN' following step by step the cognitive queries to the network and the cognitive analysis performed on the data in response from the network. The map has also been shown in figure 4 with links to the network responses that can be viewed for more consistent documentation:

  • Coherence Demarcator: As we have previously described, the first step is a network analysis initialization command that derives, in fact, from a previous cognitive processing of the assertions in the dental context and the neurological one  to which the ' Coherence Demarcator' gave absolute weight by, effectively, eliminating the dental context from the process. From what emerges from the neurological assertions  the 'State' of the Trigeminal Nervous System appears unstructured highlighting anomalies of the trigeminal reflexes for which the 'Initialization' command will be the 'Trigeminal Reflex' to go and test the database (Pubmed).
  • 1st loop open: This 'Initialization command', therefore, is considered as initial input for the Pubmed database which responds with 2,466 clinical and experimental data available to the clinician. The opening of the first true cognitive analysis is elaborated precisely on the analysis of the first result of the 'CNN' corresponding to 'Trigeminal Reflex'. In this phase we realize that a discrete percentage of data reveal a correspondence between trigeminal reflex abnormalities and demyelination problems, therefore the 1st loop open will correspond to: 'Demyelinating neuropathy'' which will return 14 sensitive data. Behind the choice of this key there is an active and dynamic cognitive process of the clinician. From the assertions in the neurological context, a neuropathic pathology was hypothesized in which the demyelinating aspect should also be considered.
  • 2st loop open: The process continues by focusing in ever greater detail on the keywords that correspond to our electrophysiological anomalous result data, i.e. the latency of the jaw jerk. This input corresponding to 'Latency' returns 6 sensitive data on which to process a further iteration of the loop.
  • 3st loop open: In the statements of the neurological context, an anomaly is also observed in the amplitude of the jaw jerk as well as in latency. This 3st open loop corresponding to 'Amplitude' returns only 2 data points on which to dwell to decide the keyword to reiterate the loop or definitively close the process. The result shows an article describing the electrophysiological evaluation of cranial neuropathies that was considered of low specific weight for our purposes while the other article highlights some trigeminal methodologies to test latency, amplitude of masticatory muscles including H-reflex .
  • 4st loop closed: The process, therefore, continues by inserting the algorithmic keyword 'H-reflex ' which returns 3,701 clinical scientific data.
  • 5st loop open: The anomalies highlighted were mainly verified on the masseters so it can be deduced that keywords concerning the 'Masseter muscle' can be intercepted in the interrogated sample of the 4st closed loop, hence the 5st open loop which returns 30 data available for the 'CNN'
  • 6st loop open: We, however, do not know whether the neuropathic damage is localized exclusively on the masseter muscle or also involves the temporal muscle, therefore another algorithmic keyword would be the 'Temporal muscle' which returns 8 sensitive data.
  • 7st loop open: From a careful analysis of this 7th open loop one wonders if these electrophysiological anomalies can be highlighted in patients with sclerosis and being present in the patient's clinical history, a previous diagnosis of 'Morphea' it was opted to interrogate the 'Network' of a another keyword focused on 'Sclerosis' which gave only one sensitive data 'Heteronymous H reflex in temporal muscle as sign of hyperexcitability in ALS patients
  • 8st loop closed: In this single node the clinician could terminate the loop but would not have solved anything because the decoding of the encrypted message has not yet been achieved. It should be noted that the electrophysiological method called 'heteronomous H-reflex' is able to highlight response anomalies from the temporal muscle for which the loop was continued by inserting the following specific keyword, ' Temporal muscle abnormal response' which returns 137 data.
  • 9st loop open: By studying the 137 articles appeared in Pubmed, the clinician intuits that the response abnormalities, in the temporal muscle through the H-reflex test, depend on a spread of the stimulus current in the unstructured axon and therefore further investigates the loop by interrogating the network for a further keyword the 'Lateral spread impulses' which, definitively, closes the cognitive process of the 'Neural Network' with a close article, the 'Ephaptic transmission is the origin of the abnormal muscle response seen in hemifacial spasm'
    Figure 4: The active links of the 'CNN' highlighted in the template correspond to the 'Pubmed' database and can be documented.


Conclusion

As demonstrated, the definition of Hemasticatory spasm in our patient Mary Poppins was not a clinically simple process, however, considering the topics presented in the previous chapters of Masticationpedia we have at least three elements of support available:

  1. A vision of 'Quantum Probability' of physical-chemical phenomena in complex biological systems which will be discussed extensively in the specific chapters.
  2. A more formal and less vague language than the natural language that directs the diagnostic analysis to the first input node of the 'CNN' through the ' Coherence Demarcator' described in the chapter '1st Clinical case: Hemimasticatory spasm'
  3. The 'CNN' process which, being managed and guided exclusively by the clinician, becomes an essential means for the definitive diagnosis.

The 'CNN', in fact, is the result of a profound cognitive process that is performed on each step of the analysis in which, the clinician weighs his intuitions, clarifies his doubts, evaluates the reports, considers the contexts and advances step by step confronting the result of the answer coming from the Pubmed database. Substantially the Pubmed database represents the current level of basic knowledge at question time and the  in the broadest specialist contexts.

A linear representation of this cognitive process labeled as with the necessary annotations it could be the following:

Trigeminal Reflex,Demyelinating neuropathy, Latency,Amplitude,H-reflex, Masseter muscle, Temporal muscle, Heteronymous H reflex in temporal muscle as sign of hyperexcitability in ALS patients,Temporal muscle abnormal responseEphaptic transmission is the origin of the abnormal muscle response seen in hemifacial spasm

There are essentially two annotations to observe: the first is the mandatory identification of the 'Initialization command' that derives from the context chosen through the ' Coherence Demarcator' and the second the order of the cognitively selected keywords.

«In fact, what happens to the 'CNN' if we consider the dental context by inserting the keyword 'Temporomandibular Disorders' as an initialization input, keeping everything else unchanged?»

By marking the network as with a dental initialization input ( Temporomandibular disorders) as follows:

Temporomandibular Disorders,Trigeminal reflex, Demyelinaying neuropathy, LatencySide asymmetry of the jaw jerk in human craniomandibular dysfunction

The message is corrupted, as explained above regarding the mathematical formula, as the 'Initialization command input' ( Tempormandibular disorders) directs the network for a set of data, no less than 20,514, which lose connections with a part of subsets. While maintaining the rest of the CNN similar to the previous one (neurological context) the network stops at the keyword 'latency'. In fact, only one scientific article was extracted and obviously concerns the latency of the jaw jerk but is not related to neuropathic disorders. (figure 5) The error, in the choice of the initialization command input of the process not only corrupts the message to be decrypted but renders vain all the upstream work of analysis of the clinical assertions discussed in the chapters of language logic.

Figure 5: Ending the 'CNN' loop with an initialization input of 'Tempororomandibular Disorders'

However, changing the order of the keywords in an exact cognitive path such as the neurological one, essentially, returns the same results as the previous one provided that the initialization command input is perfectly focalized, as can be seen in the following simulation labeled with :

Trigeminal reflex, amplitude latency demyelinating neuropathy H-reflex................

and reconnects to the previous one until closing in the output 'Ephaptic transmission is the origin of the abnormal muscle response seen in hemifacial spasm' (Figure 6)

Figure 6: Process of 'CNN' with order of keywords changed.

Note that if this chapter had been published in an impacted international scientific journal (Impact Factor) the and contextually a hypothetical 'machine learning' would have been enriched with a new content or that of the diagnosis of 'Hemimasticatory spasm' defined following the electrophysiological method of the heteronymous H-reflex. This conclusion will come in handy when we repeat the same procedure for other clinical cases in which the is updated to the database output.

Bibliography

  1. Jérôme Dockès, Gaël Varoquaux, Jean-Baptiste Poline. Preventing dataset shift from breaking machine-learning biomarkers.GigaScience, Volume 10, Issue 9, September 2021, giab055,
  2. Alexander D’Amour et al. Underspecification Presents Challenges for Credibility in Modern Machine Learning. Journal of Machine Learning Research 23 (2022) 1-61,Submitted 11/20; Revised 12/21; Published 08/22
  3. Damien Teney, Maxime Peyrard, Ehsan Abbasnejad. Predicting Is Not Understanding: Recognizing and Addressing Underspecification in Machine Learning.ECCV 2022: Computer Vision – ECCV 2022 pp 458–476Cite as
  4. Herper M. MD Anderson benches IBM Watson in setback for artificial intelligence in medicine. Forbes. 2017 February 19. [Ref list]
  5. 5.0 5.1 G S Handelman, H K Kok, R V Chandra, A H Razavi, M J Lee, H Asadi. eDoctor: machine learning and the future of medicine.J Intern Med.2018 Dec;284(6):603-619.doi: 10.1111/joim.12822. Epub 2018 Sep 3.
  6. Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000; 19: 541–61.
  7. Abdi H. A neural network primer. J Biol Syst 1994; 02: 247–81.