Difference between revisions of "The logic of the classical language"

 
(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{main menu}}
{{main menu}}
{{Versions
| en = The logic of the classical language
| it =  La logica del linguaggio classico
| fr = La logique du langage classique
| de = Die Logik der klassischen Sprache
| es = La lógica del lenguaje clásico
| pt = <!-- portoghese -->
| ru = <!-- russo -->
| pl = <!-- polacco -->
| fi = <!-- finlandese/suomi -->
| ca = <!-- catalano -->
| ja = <!-- giapponese -->
}}


[[File:Spasmo emimasticatorio assiografia.jpg|left|200px]]
{{ArtBy|
'''Classical logic''' will be discussed in this chapter. In the first part, mathematical formalism and the rules that compose it will be illustrated. In the second part, a clinical example will be given to evaluate its effectiveness in determining a diagnosis.<br>In conclusion, it is evident that a classical logic of language, which has an extremely dichotomous approach (either something is white, or it is black), cannot describe the many shades that real clinical situations have.<br>As we shall soon see, this paper will show that classical logic lacks the necessary precision, forcing us to enhance it with other types of logic languages. {{ArtBy|
| autore = Gianni Frisardi
| autore = Gianni Frisardi
| autore2 = Riccardo Azzali
| autore2 = Riccardo Azzali
| autore3 = Flavio Frisardi
| autore3 = Flavio Frisardi
}}
}}
{{Bookind2}}
'''Abstract:''' This chapter explores the complexities of medical language, particularly within the context of diagnosis and treatment of Temporomandibular Disorders (TMD) and Orofacial Pain (OP). Medical language often leads to misunderstandings due to its hybrid nature, blending everyday language with specialized terms, which can be interpreted differently across medical disciplines. This is exemplified in the clinical case of Mary Poppins, who has suffered from OP for over a decade, with conflicting diagnoses from a dentist and a neurologist. The dentist diagnosed her with TMD based on clinical tests like axiography, electromyography (EMG), and radiographic imaging, while the neurologist attributed her pain to a neuromotor disorder (nOP).


==Introduction==
The chapter examines how classical logic language, used in traditional medical diagnostics, supports the dentist's diagnosis, focusing on the compatibility of evidence like condylar remodeling and masticatory muscle activity. However, the chapter also highlights the limitations of this approach, showing that new electrophysiological data could challenge the dentist’s assumptions and open the door to different interpretations of OP’s origins.
We parted ways in the previous chapter on the [[The logic of medical language|Logic of Medical Language]]’ in an attempt to shift the attention from clinical symptom or sign to encrypted machine language for which, the arguments of Donald E Stanley, Daniel G Campos and Pat Croskerry are welcome but connected to time <math>t_n</math> as an information carrier (anticipation of the symptom) and to the message as a machine language and not as a non-verbal language).<ref>{{Cite book  
 
In light of this, the chapter introduces the concept of "system logic language," which moves beyond cause-and-effect models to consider the masticatory system as a complex, dynamic entity. This perspective encourages a more nuanced understanding of patient conditions, recognizing that symptoms may not always align neatly with classical diagnostic frameworks. By analyzing Mary Poppins' case through both classical and system logic, the chapter calls for a reevaluation of medical language and diagnostic approaches, proposing a shift toward probabilistic and interdisciplinary methods for more accurate diagnoses.
 
Ultimately, this chapter suggests that a deeper understanding of medical language and logic can improve clinical decision-making, reduce diagnostic errors, and foster a more comprehensive approach to patient care.
 
==Introduction to the Logic of Medical Language==
In the previous chapter, dedicated to the "[[Logic of medical language|Logic of Medical Language]]", we aimed to shift the focus from symptoms or clinical signs to an encrypted machine language. In this context, the arguments of Donald E. Stanley, Daniel G. Campos, and Pat Croskerry are particularly pertinent, especially when connected to the concept of time '''<math>t_n</math>''' as an information vector (anticipating the symptom) and to the consideration of the message as a machine language rather than a verbal language).
<ref>{{Cite book  
  | autore = Stanley DE
  | autore = Stanley DE
  | autore2 = Campos DG
  | autore2 = Campos DG
Line 56: Line 49:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref><br>Obviously, this does not preclude the validity of the clinical history built on a pseudo-formal verbal language by now well rooted in the clinical reality and which has already proved its diagnostic authority. The attempt to shift attention to a machine language and to the System provides nothing but an opportunity for the validation of Diagnostic Medical Science.
  }}</ref>  
 
However, this does not lessen the importance of the clinical history, established on a pseudo-formal verbal language, which has now firmly entrenched itself in clinical practice and has proven its diagnostic effectiveness. Our aim in emphasizing a machine language and the system is merely to provide an additional opportunity to validate Medical-Diagnostic Science. We are fully aware that our "Linux Sapiens" remains puzzled by what has been anticipated and continues to ponder.


We are definitely aware that our Linux Sapiens is still perplexed about what has been anticipated and continues to wonder{{q4|... <!--11-->but... <!--12-->could the logic of Classical Language help us to solve poor Mary Poppins' dilemma?|<!--13-->a little patience, please}}
{{q2|Could the logic of classical language help us solve the dilemma of poor Mary Poppins?|A bit of patience, please}}


We cannot provide a conventional answer because science does not progress with assertions that are not justified by scientifically validated questions and reflections; and this is actually the reason why we will try to give voice to some thoughts, perplexities and doubts expressed on some basic topics brought into discussion in some scientific articles.
We cannot limit ourselves to providing a conventional answer, as science progresses not through baseless assertions but through questions and reflections that have passed the scrutiny of scientific validation. This compels us to explore and give voice to thoughts, perplexities, and doubts raised by certain key concepts discussed in various scientific articles.


One of these fundamental topics is 'Craniofacial Biology'.
Among these critical topics is "'''Craniofacial Biology'''".


Let's start with a well known study by Townsend and Brook<ref name=":0">{{Cite book  
==='''Craniofacial Biology'''===
We begin with an influential study by Townsend and Brook,
<ref name=":0">{{Cite book  
  | autore = Townsend GC
  | autore = Townsend GC
  | autore2 = Brook AH
  | autore2 = Brook AH
Line 81: Line 78:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref>: in this work the authors question the status quo of both fundamental and applied research in 'Craniofacial Biology' to extract clinical considerations and implications. One topic they covered was the "Interdisciplinary Approach", in which Geoffrey Sperber and his son Steven saw the strength of the exponential progress of 'Craniofacial Biology' in technological innovations such as gene sequencing, CT scanning, MRI imaging, scanning laser, image analysis, ultrasonography and spectroscopy<ref>{{Cite book  
  }}</ref> in which the authors challenge the current research paradigm, both theoretical and applied, in "Craniofacial Biology", aiming to derive clinical considerations and implications. One aspect they address is the "Interdisciplinary Approach", through which Geoffrey Sperber and his son Steven recognized the potential for exponential growth in the field of "Craniofacial Biology" due to technological innovations such as gene sequencing, CT scans, MRI imaging, laser scanning, image analysis, ultrasound, and spectroscopy.
<ref>{{Cite book  
  | autore = Sperber GH
  | autore = Sperber GH
  | autore2 = Sperber SM
  | autore2 = Sperber SM
Line 98: Line 96:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref>.
  }}</ref>


Another topic of great interest for the implementation of 'Craniofacial Biology' is the awareness that biological systems are 'Complex Systems'<ref>{{Cite book  
Another topic of significant interest within 'Craniofacial Biology' is the recognition that biological systems are considered 'Complex Systems'.
<ref>{{Cite book  
  | autore = Brook AH
  | autore = Brook AH
  | autore2 = Brook O'Donnell M
  | autore2 = Brook O'Donnell M
Line 122: Line 121:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> and that 'Epigenetics' plays a key role in craniofacial molecular biology. Researchers from Adelaide and Sydney provide a critical review in the field of epigenetics aimed, in fact, at the dental and craniofacial disciplines.<ref>{{Cite book  
  }}</ref> 'Epigenetics' also plays a fundamental role in craniofacial molecular biology. Researchers from Adelaide and Sydney have provided an in-depth critique in the field of epigenetics, with a particular focus on dental and craniofacial disciplines.
<ref>{{Cite book  
  | autore = Williams SD
  | autore = Williams SD
  | autore2 = Hughes TE
  | autore2 = Hughes TE
Line 142: Line 142:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> Phenomics, in particular, discussed by these authors (see [[wikipedia:Phenomics|Phenomics]])) is a general research field that involves the measurement of changes in the teeth and associated orofacial structures resulting from the interactions between genetic, epigenetic and environmental factors during development.<ref>{{Cite book  
  }}</ref> Phenomics, in particular, explored by these authors (see [[wikipedia:Phenomics|Phenomics]]), is a research area dedicated to measuring changes in teeth and associated orofacial structures resulting from interactions between genetic, epigenetic, and environmental factors during development.
<ref>{{Cite book  
  | autore = Yong R
  | autore = Yong R
  | autore2 = Ranjitkar S
  | autore2 = Ranjitkar S
Line 165: Line 166:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> In this same context, the work of Irma Thesleff from Helsinki, Finland, should be highlighted. She explains in her work that there are a series of transient signalling centres in the dental epithelium that play important roles in the programme of tooth development.<ref>{{Cite book  
  }}</ref>
In this context, it is crucial to mention the work of Irma Thesleff from Helsinki, Finland, who highlighted the existence of numerous transient signaling centers in the dental epithelium that play key roles in the tooth development program.
<ref>{{Cite book  
  | autore = Thesleff I
  | autore = Thesleff I
  | titolo = Current understanding of the process of tooth formation: transfer from the laboratory to the clinic
  | titolo = Current understanding of the process of tooth formation: transfer from the laboratory to the clinic
Line 181: Line 184:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> Besides there are other works, by Peterkova R, Hovor akova M, Peterka M, Lesot H, providing a fascinating review of the processes that occur during dental development;<ref>{{Cite book  
  }}</ref>
 
Additionally, the works by Peterkova R., Hovorakova M., Peterka M., and Lesot H., offer a fascinating overview of the processes involved in dental development.
<ref>{{Cite book  
  | autore = Peterkova R  
  | autore = Peterkova R  
  | autore2 = Hovorakova M
  | autore2 = Hovorakova M
Line 244: Line 250:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> for the sake of completeness, let's not forget the works by Han J, Menicanin D, Gronthos S, and Bartold PM., who review comprehensive documentation on stem cells, tissue engineering and periodontal regeneration.<ref>{{Cite book  
  }}</ref> For completeness, the studies by Han J., Menicanin D., Gronthos S., and Bartold P.M., which have explored a wide range of research on stem cells, tissue engineering, and periodontal regeneration, cannot be omitted.
<ref>{{Cite book  
  | autore = Han J
  | autore = Han J
  | autore2 = Menicanin D
  | autore2 = Menicanin D
Line 265: Line 272:
  }}</ref>
  }}</ref>


In this review, arguments could not be missing on genetic, epigenetic and environmental influences during morphogenesis that lead to variations in the number, size and shape of the tooth<ref>{{Cite book  
This review necessarily included discussions on genetic, epigenetic, and environmental influences that, during morphogenesis, lead to variations in the number, size, and shape of teeth,
<ref>{{Cite book  
<nowiki> </nowiki><nowiki>|</nowiki> autore = Brook AH
<nowiki> </nowiki><nowiki>|</nowiki> autore = Brook AH
<nowiki> </nowiki><nowiki>|</nowiki> autore2 = Jernvall J
<nowiki> </nowiki><nowiki>|</nowiki> autore2 = Jernvall J
Line 300: Line 308:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> and the influence of tongue pressure on growth and craniofacial function.<ref>{{Cite book  
  }}</ref> as well as on the effect of tongue pressure on growth and craniofacial functions.
<ref>{{Cite book  
  | autore = Kieser JA
  | autore = Kieser JA
  | autore2 = Farland MG
  | autore2 = Farland MG
Line 337: Line 346:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref>Townsend and Brook's extraordinary work too deserves a mention<ref name=":0" />, and the intrinsic content of what has been reported in it matches equally well with another commendable author: HC Slavkin.<ref>{{Cite book  
  }}</ref>
Furthermore, special mention is deserved for the exceptional work of Townsend and Brook, whose content aligns well with the reflections of another prominent author, HC Slavkin. Slavkin
<ref>{{Cite book  
  | autore = Slavkin HC
  | autore = Slavkin HC
  | titolo = The Future of Research in Craniofacial Biology and What This Will Mean for Oral Health Professional Education and Clinical Practice
  | titolo = The Future of Research in Craniofacial Biology and What This Will Mean for Oral Health Professional Education and Clinical Practice
Line 353: Line 364:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> Slavkin asserts that:
  }}</ref>asserts:
:"''The future is full of significant opportunities to improve the clinical outcomes of congenital and acquired craniofacial malformations. Clinicians play a key role as critical thinking and clinical audience substantially improve diagnostic accuracy and therefore clinical health outcomes''."
 
{{q4|... <!--35-->I understand the progress of Science described by the authors but I don't understand the change of thought|<!--36-->I'll give you a practical example}}


The future holds countless opportunities to significantly improve the clinical outcomes of both congenital and acquired craniofacial malformations. Clinicians play a crucial role, as critical thinking combined with clinical experience greatly enhances diagnostic accuracy, and consequently, health outcomes.{{q2|I understand the progress of Science described by the authors but I do not understand the change in thought|Let me give you a practical example}}


In the "[[Introduction]]", we raised some issues related to malocclusion. In this context, we examine the logic of the medical language used by the dentist when faced with the clinical case described in the "Introductory Chapter", including diagnostic and therapeutic conclusions.


In the chapter "[[Introduction]]" we  posed certain questions on the subject of malocclusion but in this context we simulate the dentist's logic of medical language when faced with the clinical case presented in the "Introduction chapter" with its diagnostic and therapeutic conclusions.
The patient has a unilateral posterior crossbite and an anterior open bite.
 
<ref>
The patient has a posterior unilateral crossbite and an anterior openbite.<ref>
{{cita libro
{{cita libro
|autore=Littlewood SJ
|autore=Littlewood SJ
Line 378: Line 387:
|DOI=10.1111/adj.12475
|DOI=10.1111/adj.12475
|OCLC=
|OCLC=
}}</ref> The crossbite is another disturbing element of the normal occlusion<ref>{{cita libro
}}</ref>The crossbite represents a deviation from normal occlusion
<ref>{{cita libro
|autore=Miamoto CB
|autore=Miamoto CB
|autore2=Silva Marques L
|autore2=Silva Marques L
Line 394: Line 404:
|DOI=
|DOI=
|OCLC=
|OCLC=
}}</ref> for which it is compulsorily treated together with the openbite.<ref>{{cita libro
}}</ref> and is therefore treated concurrently with the open bite.
<ref>{{cita libro
|autore=Alachioti XS
|autore=Alachioti XS
|autore2=Dimopoulou E
|autore2=Dimopoulou E
Line 424: Line 435:
|DOI=10.1179/bjo.5.1.21
|DOI=10.1179/bjo.5.1.21
|OCLC=
|OCLC=
}}</ref> This type of reasoning means that the model (masticatory system) is 'normalized to occlusion'; and read in reverse, it means that the occlusal discrepancy is the cause of malocclusion, hence, a disease of the Masticatory System, and therefore an intervention to restore the physiological masticatory function is justifiable. (Figure 1a).
}}</ref> This reasoning suggests that the model (masticatory system) is 'normalized to occlusion'; inversely interpreted, it implies that an occlusal discrepancy is a cause of malocclusion, that is, a disorder of the Masticatory System. Hence, an intervention to restore proper masticatory function is justified. (Figure 1a).
----
This example is the classical logic language, as we will explain in detail, but now a doubt arises:


This example is Classical Logic Language, as we are going to explain in detail, but now a doubt arises:
<blockquote>
:At the time when orthodontic and orthognathics axioms were constructing protocols confirmed by the International Scientific Community, were they aware of the information we discussed in the introduction to this chapter?
At the time of formulating the orthodontic and orthognathic axioms, which led to the creation of protocols ratified by the International Scientific Community, were the information discussed in the introduction to this chapter already known?
</blockquote>
Certainly not, as the time '''<math>t_n</math>''' is a '''vector of information'''. However, despite this cognitive limitation, we proceed by adopting a classic language logic that raises relevant issues for citizen safety.
{{q2|this statement seems a bit risky to me!|sure, but the logical sequence has already been anticipated}}


Certainly not because time '''<math>t_n</math> is the bearer of information''' but despite this cognitive limit we proceed with a very questionable Classical Language Logic for the safety of the citizen.{{q2|... <!--46-->this statement seems a bit risky!|<!--47-->sure, but the logical sequence has already been anticipated}}
If this case were analyzed through a mentality oriented towards a 'system language logic', which we will discuss in a dedicated chapter, the conclusions could be surprising.


If the same case were interpreted with a mindset that followed a 'System's language logic' (it will be discussed in the appropriate chapter), the conclusions would be surprising.
Analyzing the electrophysiological responses obtained from the patient with malocclusion, represented in figures 1b, 1c, and 1d (with explanations provided directly in the captions to facilitate the debate), it clearly emerges that these data lead us to considerations quite different from the simple 'Malocclusion'. Therefore, the orthodontic and orthognathic axioms based on a 'cause/effect' relationship show a significant conceptual gap.


If we observe the electrophysiological responses performed on the patient with malocclusion in figures 1b, 1c and 1d (with the explanation made directly in the caption to simplify the discussion), we shall notice that these data can make us think about anything except a 'Malocclusion' and, therefore, the axioms of type orthodontic and orthognathics 'cause/effect' leave a conceptual void.<gallery widths="350" heights="282" perrow="2" mode="slideshow">
<gallery widths="350" heights="282" perrow="2" mode="slideshow">
File:Occlusal Centric view in open and cross bite patient.jpg|'''Figure 1a:''' Patient with malocclusion, open bite and right posterior crossbite who in rehabilitation terms must be treated with orthodontic therapy and / or orthognathic surgery
File:Occlusal Centric view in open and cross bite patient.jpg|Figure 1a: Patient with malocclusion, open bite, and right posterior crossbite which in rehabilitative terms must be treated with orthodontic therapy and/or orthognathic surgery
File:Bilateral Electric Transcranial Stimulation.jpg|'''<!--52-->Figure 1b:''' <!--53-->Motor evoked potential from electrical transcranial stimulation of the trigeminal roots.Note the structural symmetry calculated by the peak-to-peak amplitude on the left and right masseters (traces upper and lower respectively)
File:Bilateral Electric Transcranial Stimulation.jpg|Figure 1b: Motor evoked potential from transcranial electrical stimulation of the trigeminal roots. Note the structural symmetry calculated from the peak-to-peak amplitude on the left and right masseters (upper and lower traces respectively)
File:Jaw Jerk .jpg|'''<!--54-->Figure 1c:''' <!--55-->Mandibular reflex evoked or jaw jerk by percussion of the chin through a triggered neurological hammer. Note the functional symmetry calculated by the peak-to-peak amplitude on the left and right masseters (traces upper and lower respectively)
File:Jaw Jerk .jpg|Figure 1c: Mandibular evoked reflex or mandibular jerk through percussion of the chin with a triggered neurological hammer. Note the functional symmetry calculated from the peak-to-peak amplitude on the left and right masseters (upper and lower traces respectively)
File:Mechanic Silent Period.jpg|'''<!--56-->Figure 1d:''' <!--57-->Mechanical silent period evoked by percussion of the chin through a triggered neurological hammer. Note the functional symmetry calculated on the integral area of the right and left masseters (traces upper and lower respectively).
File:Mechanic Silent Period.jpg|Figure 1d: Mechanically evoked silent period from percussion of the chin with a triggered neurological hammer. Note the functional symmetry calculated on the integral area of the right and left masseters (upper and lower traces respectively).
</gallery>
</gallery>
----
----
{{q4|<!--58-->Let me better understand what Classical Language Logic has to do with it|<!--59-->We will do it following the clinical case of our Mary Poppins}}
{{q2|So, how does the classic language logic connect to this context? |The contrast with the "system language logic" highlights the interpretive limits of traditional approaches to malocclusion. This suggests that orthodontic models of cause/effect might need a critical review in light of new electrophysiological evidence.}}
== Mathematical Formalism==
In this chapter, we will revisit the clinical case of Mary Poppins, who has been suffering from Orofacial Pain for over ten years, with a diagnosis of "Temporomandibular Disorder" (TMD) confirmed by her dentist, or, more specifically, Orofacial Pain associated with TMD. To understand the complexity in arriving at a precise diagnostic definition using Classic Language Logic, it is fundamental to introduce and analyze the concept at the basis of the philosophy of classical language.


==Mathematical formalism==
In this chapter, we will reconsider the clinical case of the unfortunate Mary Poppins suffering from Orofacial Pain for more than 10 years to which her dentist diagnosed a 'Temporomandibular Disorders' (TMDs) or rather Orofacial Pain from TMDs. To better understand why the exact diagnostic formulation remains complex with a Logic of Classical Language, we should understand the concept on which the philosophy of classical language is based with a brief introduction to the topic.
===Propositions===
===Propositions===


Classical logic is based on propositions. It is often said that a proposition is a sentence that asks whether the proposition is true or false. Indeed, a proposition in mathematics is usually either true or false, but this is obviously a little too vague to be a definition. It can be taken, at best, as a warning: if a sentence, expressed in common language, makes no sense to ask whether it is true or false, it will not be a proposition but something else.
"The simplest propositions can be combined with each other to form new and more complex propositions through the use of logical operators and quantifier connectors. These tools of logic allow us to construct broader statements starting from basic concepts, thus facilitating the formulation of theorems and proofs in mathematics and other disciplines that require precision and rigor.


It can be argued whether or not common language sentences are propositions as in many cases it is not often evident if a certain statement is true or false.
The fundamental logical operators include:


''Fortunately, mathematical propositions, if well expressed, do not show such ambiguities’.''
*'''Conjunction''', denoted by the symbol <math>\land</math> (and): represents the logical operation "AND". A compound proposition formed by two propositions joined with "and" is true only if both propositions are true.
*'''Disjunction''', denoted by the symbol <math>\lor</math> (or): represents the logical operation "OR". A compound proposition is true if at least one of the component propositions is true.
*'''Negation''', denoted by the symbol <math>\urcorner</math> (not): reverses the truth value of a proposition. If a proposition is true, its negation is false, and vice versa.
*'''Implication''', denoted by the symbol ⇒ (if... then): expresses a conditional relationship between two propositions. If the antecedent (first proposition) is true, then the consequent (second proposition) must be true for the implication to be true.
*'''Logical consequence''', denoted by the symbol <math>\vdash</math> (it follows that): indicates that a proposition is a logical consequence of the previous ones within a given logical system.
*'''Universal quantifier''', denoted by the symbol <math>\forall</math> (for all): expresses that the following proposition is true for all elements of a certain set.
* '''Proof''', often indicated by reasonings that lead to the conclusion symbolized with <math>\mid</math> (thus): indicates the culmination of an argument or logical reasoning that leads to a conclusion.
*'''Membership''', denoted by the symbol <math>\in</math> (belongs to) or <math>\not\in</math> (does not belong to): used to indicate whether an element belongs or does not belong to a set.


Simpler propositions can be combined with each other to form new, more complex propositions. This occurs with the help of operators called ''logical operators'' and quantifying connectives which can be reduced to the following<ref><!--68-->For the sake of simplicity of exposition and reading, we will deal in this chapter with the ''symbol of belonging'', the ''symbol of consequence'' and the "''such that''" as if they were quantifiers and connectives of propositions in classical logic.<br><!--69-->Strictly speaking, within classical logic they should not be treated as such, but even if we do, this does not absolutely change the meaning of the speech and no inconsistencies of any kind are created.</ref>:
Quantifier connectors, such as the universal quantifier (<math>\forall</math>) and the existential quantifier (<math>\exists</math>), allow for extending statements to sets of elements, offering a way to express propositions concerning 'all elements' of a certain set or 'at least one element' of such a set.
#''Conjunction'', which is indicated by the symbol <math>\land</math> (and):
#''Disjunction'', which is indicated by the symbol <math>\lor</math>  (or):
#''Negation'', which is indicated by the symbol <math>\urcorner</math> (not):
#''Implication'', which is indicated by the symbol <math>\Rightarrow</math> (if ... then):
#''Consequence'', which is indicated by the symbol <math>\vdash</math> (is a partition of..):
#''Universal quantifier'', which is indicated by the symbol <math>\forall</math> (for all):
#''Demonstration'', which is indicated by the symbol <math>\mid</math> (such that): and
#''Membership'', which is indicated by the symbol <math>\in</math> (is an element of) or by the symbol <math>\not\in</math> (is not an element of):


===Demonstration by absurdity===
By combining these tools, it is possible to construct complex propositions that serve as the foundation for logical arguments and mathematical reasoning, eliminating the ambiguities typical of common language and providing a clear structure for analysis and proof."
===Proof by Contradiction===


Furthermore, in classical logic there is a principle called the <u>excluded third</u> which declares that a sentence that cannot be false must be taken as true since there is no third possibility.
In classical logic, there exists a principle called "the law of excluded middle", which asserts that a proposition, which cannot be false, must be considered true, since there is no third possibility.


Suppose we need to prove that the proposition <math>p</math> is true. The procedure consists in showing that the assumption that <math>p</math> is false leads to a logical contradiction. Thus the proposition <math>p</math> cannot be false, and therefore, according to the law of the excluded third, it must be true. This method of demonstration is called ''demonstration by absurdity''<ref>{{Cite book  
Suppose we have to prove that the proposition p is true. The procedure consists of demonstrating that assuming <math>p</math> to be false leads to a logical contradiction. Consequently, the proposition <math>p</math> cannot be false and, therefore, according to the law of excluded middle, must be true. This method of proof is known as proof by contradiction.<ref>{{Cite book
| autore = Pereira LM
| author = Pereira LM
| autore2 = Pinto AM
| author2 = Pinto AM
| titolo = Reductio ad Absurdum Argumentation in Normal Logic Programs
| title = Reductio ad Absurdum Argumentation in Normal Logic Programs
| url = http://www-lia.deis.unibo.it/confs/ArgNMR/proceedings/ArgNMR-proceedings.pdf#page=100
| url = http://www-lia.deis.unibo.it/confs/ArgNMR/proceedings/ArgNMR-proceedings.pdf#page=100
| volume = Argumentation and Non-Monotonic Reasoning - An LPNMR Workshop
| volume = Argumentation and Non-Monotonic Reasoning - An LPNMR Workshop
| opera =  
| work =
| anno = 2007  
| year = 2007
| editore = Arg NMR
| publisher = Arg NMR
| città = Tempe, Arizona - Caparica, Portugal
| city = Tempe, Arizona - Caparica, Portugal
| ISBN =  
| ISBN =
| PMID =  
| PMID =
| PMCID =  
| PMCID =
| DOI =  
| DOI =
| oaf = <!-- qualsiasi valore -->
| oaf = <!-- any value -->
| LCCN =  
| LCCN =
| OCLC =  
| OCLC =
}}</ref>
}}</ref>
===Predicates===


===Predicates===
What has been briefly described so far represents the logic of propositions, which asserts something about specific mathematical objects. Examples of propositions include: "2 is greater than 1, therefore 1 is less than 2" or "a square does not have 5 sides, therefore it cannot be a pentagon". Often, however, mathematical statements are not limited to individual objects but refer to generic objects within a set, as in the expression "the elements ''<math>X</math>'' are taller than 2 meters", where ''<math>X</math>'' indicates a generic group (for example, all volleyball players). In these cases, we talk about predicates.


What we have briefly described so far is the logic of propositions. A proposition asserts something about specific mathematical objects such as: '2 is greater than 1, so 1 is less than 2' or 'a square has no 5 sides then a square is not a pentagon'. Many times, however, the mathematical statements concern not the single object, but generic objects of a set such as: '''<math>X</math>'' are taller than 2 meters' where ''<math>X</math>'' denotes a generic group (for example all volleyball players). In this case we speak of predicates.
Intuitively, a predicate is a sentence that concerns a set of elements (which, in our medical context, would be the patients) and makes a statement about them.
{{q2|So, does Mary Poppins suffer from TMD or not?|let's see what classical language logic tells us}}


Intuitively, a predicate is a sentence concerning a group of elements (which in our medical case will be the patients) and which states something about them.{{q4|<!--99-->Then poor Mary Poppins is a TMD patient or she is not!|<!--100-->let's see what Classical Language Logic tells us}}
In addition to the confirmations derived from the medical language logic discussed in the previous chapter, the dentist acquires further instrumental data that strengthen his diagnosis. These tests include the analysis of axiographic traces, obtained through the use of a custom-made functional paraocclusal fork. This tool allows for the visualization and quantification of the condylar paths during masticatory functions. As shown in Figure 4, the flattening of the condylar traces on the right side, both in the mediotrusive masticatory kinetics (indicated in green) and in the opening and protrusion cycles (in grey), confirms the anatomical and functional flattening of the right TMJ during the dynamics of mastication.


In addition to the confirmations derived from the logic of medical language discussed in the previous chapter, the dentist colleague acquires other instrumental data that allow him to confirm his diagnosis. The latter tests concern the analysis of the axiographic traces by using a customized functional paraocclusal clutch which allow the visualization and quantification of the condylar traces in masticatory functions. As can be seen from Figure 4 the flattening of the condylar traces on the right side both in the mediotrusive masticatory kinetics (green colour) and the opening and protrusion cycles (gray colour) confirm the anatomical and functional flattening of the right TMJ in the dynamics chewing. In addition to the axiography, the colleague performs a surface electromyography on the masseters (Fig. 6) asking the patient to exert  the maximum of his muscles force. This type of electromyographic analysis is called "EMG Interferential Pattern" due to the high frequency content of the spikes that undergo phase interference. In fact, Figure 6 shows an asymmetry in the recruitment of the motor units of the right masseter (upper trace) compared to those of the left masseter (lower trace).<ref>{{cite book  
In addition to axiography, surface electromyography on the masseter muscles is performed (see Figure 6), during which the patient is asked to exert maximum muscle force. This type of electromyographic analysis, called 'EMG Interferential Pattern', is characterized by the high-frequency content of the peaks showing phase interference. Indeed, Figure 6 highlights an asymmetry in the recruitment of motor units between the right masseter (upper trace) and the left masseter (lower trace).
<ref>{{cite book  
  | autore = Castroflorio T
  | autore = Castroflorio T
  | autore2 = Talpone F
  | autore2 = Talpone F
Line 564: Line 583:
==2nd Clinical Approach==
==2nd Clinical Approach==
(Hover over the images)
(Hover over the images)
<gallery widths="350" heights="282" perrow="2" mode="slideshow">
<gallery widths="350" heights="282" perrow="2" mode="slideshow">
File:Spasmo emimasticatorio.jpg|'''<!--107-->Figure 2:''' <!--108-->Patient reporting 'Orofacial Pain' in his right hemilateral face
File:Spasmo emimasticatorio.jpg|Figure 2: Patient reports "orofacial pain" on the right facial hemisphere.
File:Spasmo emimasticatorio ATM.jpg|'''<!--109-->Figure 3:''' <!--110-->Patient's TMJ stratigraphy showing signs of condylar flattening and osteophyte
File:Spasmo emimasticatorio ATM.jpg|Figure 3: Stratigraphy of the temporomandibular joint (TMJ) of the patient showing signs of condylar flattening and presence of osteophytes.
File:Atm1 sclerodermia.jpg|'''<!--111-->Figure 4:''' <!--112-->Computed Tomography of the TMJ
File:Atm1 sclerodermia.jpg|Figure 4: Computed tomography of the TMJ
File:Spasmo emimasticatorio assiografia.jpg|'''<!--113-->Figure 5:''' <!--114-->Axiography of the patient showing a flattening of the chewing pattern on his right condyle
File:Spasmo emimasticatorio assiografia.jpg|Figure 5: Axiography of the patient showing a flattening of the masticatory pattern at the level of the right condyle.
File:EMG2.jpg|'''<!--115-->Figure 6:''' <!--116-->EMG Interferential Pattern. <!--117-->Overlapping upper traces corresponding to the right masseter, lower to the left masseter.
File:EMG2.jpg|Figure 6: Interfering EMG activity. Overlapping upper traces corresponding to the right masseter, below to the left masseter.
</gallery>
</gallery></center>
</center>
----
 
=====Propositions in the Dental Context=====
===== Dental propositions =====
In an attempt to apply mathematical formalism to interpret the dentist's diagnostic conclusions using classical logic language, we define the following predicates:
While seeking to use the mathematical formalism to translate the conclusions reached by the dentist with classical logic language, we consider the following predicates:
*''x'' <math>\equiv</math> Normal patients (normal stands for patients commonly present in the specialist setting)
 
*<math>A(x) \equiv</math> Bone remodelling with osteophyte from stratigraphic examination and condylar CT; and
*<math>B(x)\equiv</math> Temporomandibular Disorders (TMDs) resulting in Orofacial Pain (OP)
*<math>\mathrm{a}\equiv</math> Specific patient: Mary Poppins
 
Any normal patient <math>\forall\text{x}
</math> who is positive on the radiographic examination of the TMJ <math>\mathrm{\mathcal{A}}(\text{x})</math>  [Figure 2 and 3] is affected by TMDs <math>\rightarrow\mathrm{\mathcal{B}}(\text{x})</math>; from this it follows that <math>\vdash</math> being Mary Poppins positive (and also being a "Normal" patient) on the TMJ x-ray <math>A(a)</math> then Mary Poppins is also affected by TMDs <math>\rightarrow \mathcal{B}(a)</math>The language of predicates is expressed in the following way:
 
<math>\{a \in x \mid \forall \text{x} \; A(\text{x}) \rightarrow {B}(\text{x}) \vdash A( a)\rightarrow B(a) \}</math>. <math>(1)</math>
 
At this point, it must also be considered that predicate logic is not used only to prove that a particular set of premises imply a particular evidence <math>(1)</math>. It is also used to prove that a particular assertion is not true, or that a particular piece of knowledge is logically compatible/incompatible with a particular evidence.
 
In order to prove that this proposition is true we must use the above mentioned<u>demonstration by absurdity</u>. If its denial creates a contradiction, surely the dentist's proposition will be true:
 
<math>\urcorner\{a \in x \mid \forall \text{x} \; A(\text{x}) \rightarrow {B}(\text{x}) \vdash A( a)\rightarrow B(a) \}</math>. <math>(2)</math>


"<math>(2)</math>" states that it is not true that those who test positive on TMJ CT have TMDs, so Mary Poppins (TMJ CT positive normal patient) does not have TMDs.
<math>x \equiv</math> Normal patients (where "normal" refers to patients commonly encountered in a specialist setting)
<math>A(x) \equiv</math> Presence of bone remodeling with detected osteophyte from stratigraphic exams and condylar CT
<math>B(x)\equiv</math> Temporomandibular Disorders (TMD) resulting in orofacial pain (OP)
<math>\mathrm{a}\equiv</math> Specific patient: Mary Poppins
We establish that for every normal patient <math>\mathrm{\mathcal{A}}(\text{x})</math>, if they test positive for the TMJ radiographic examination <math>\mathrm{\mathcal{A}}(\text{x})</math> [see Figures 2 and 3], then they are affected by TMD<math>\rightarrow\mathrm{\mathcal{B}}(\text{x})</math>. Consequently <math>\vdash</math> if Mary Poppins tests positive (and is considered a "normal patient") for the TMJ radiographic exam <math>A(a)</math>, it follows that she too is affected by TMD <math>\rightarrow \mathcal{B}(a)</math>. This can be formally expressed as:
{|
|
|<math>{a \in x \mid \forall \text{x} ; A(\text{x}) \rightarrow {B}(\text{x}) \vdash A( a)\rightarrow B(a) }
</math>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|<math>(1)</math>
|}


The dentist believes that Mary Poppins' claim (that she does not have TMD under these premises) is a contradiction so the main claim is true.
In addition to proving that a certain set of premises implies a particular conclusion, predicate logic is also used to prove the falsity of a statement or the logical compatibility/incompatibility of a certain piece of knowledge with a given piece of evidence.
===Neurophysiological proposition===


Let us imagine that the neurologist disagrees with the conclusion <math>(1)</math> and asserts that Mary Poppins is not affected by TMDs or that at least it is not the main cause of Orofacial Pain, but that, rather, she is affected by a neuromotor Orofacial Pain (<sub>n</sub>OP), therefore that she does not belong to the group of 'normal patients' but is to be considered a 'non-specific patient' (uncommon in the specialist context).
To verify the truthfulness of this proposition, we resort to proof by contradiction. If the negation of the proposition generates a contradiction, we can conclude that the original hypothesis of the dentist is correct:
{|
|
|<math>\urcorner{a \in x \mid \forall \text{x} ; A(\text{x}) \rightarrow {B}(\text{x}) \vdash A( a)\rightarrow B(a) }</math>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|<math>(2)</math>
|}
Statement (2) asserts that it is not true that patients who test positive for the TMJ CT are affected by TMD, implying that Mary Poppins (a "normal patient" with a positive outcome for the TMJ CT) is not affected by TMD.


Obviously, this dialectic would last indefinitely because both would defend their scientific-clinical context; but let us see what happens in the logic of predicates.
The dentist believes that this statement, based on the provided premises, constitutes a contradiction, thereby confirming the validity of the main statement.
===Propositions in the Neurological Context===


The neurologist's statement would be like:
Suppose the neurologist contests conclusion (1), arguing that Mary Poppins does not suffer from TMD or that, at least, TMD is not the primary cause of her Orofacial Pain. Instead, he hypothesizes that Mary suffers from neuromotor type Orofacial Pain (<sub>n</sub>OP), classifying her not as a 'normal patient' but as a 'specific patient' (atypical for the dental specialist).


<math>\{a \not\in x \mid \forall \text{x} \; A(\text{x}) \rightarrow {B}(\text{x}) \and A( a)\rightarrow \urcorner B(a) \}</math>. <math>(3)</math>
The neurologist's position can be formalized as follows:
{|
|
|<math>{a \not\in x \mid \forall \text{x} ; A(\text{x}) \rightarrow {B}(\text{x}) \and A( a)\rightarrow \urcorner B(a) }</math>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|<math>(3)</math>
|}
This statement (3) claims that there might exist a patient with a positive outcome for the TMJ CT who does not suffer from TMD. To validate this hypothesis through proof by contradiction, consider its negation:
{|
|
|<math>\urcorner{a \not\in x \mid \forall \text{x} ; A(\text{x}) \rightarrow {B}(\text{x}) \and A( a)\rightarrow \urcorner B(a) }</math>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|<math>(4)</math>
|}
Analyzing predicate logic, we find no sufficient reasons to believe that negation (4) leads to a contradiction, indicating that the neurologist, unlike the dentist, may not have sufficient logical grounds to confirm his conclusion without further evidence.


"<math>(3)</math>" means that every patient with CT positive of TMJ could not be TMDs.
{{q2|so the dentist triumphs!|don't take it for granted}}
===Compatibility and Incompatibility of Statements ===
The complexity arises when the dentist presents a series of statements based on clinical reports, such as stratigraphy and computed tomography (CT) of the temporomandibular joint (TMJ), indicating an anatomical flattening of the joint, axiography of the condylar paths with a reduction of cinematic convexity, and an electromyographic (EMG) interference pattern showing asymmetry on the masseters. These evidences can be considered co-causes of damage to the temporomandibular joint and, consequently, responsible for "Orofacial Pain".


In order to prove that this proposition is true, we must use once again the above mentioned <u>demonstration by absurdity</u>. If its denial creates a contradiction, surely the neurologist's proposition will be true:
Documents, reports, and clinical evidence can be used to make the neurologist's statement incompatible and support the dentist's diagnostic conclusion. To do this, we present some logical rules that describe compatibility or incompatibility according to classical language logic:


<math>\urcorner\{a \not\in x \mid \forall \text{x} \; A(\text{x}) \rightarrow {B}(\text{x}) \and A( a)\rightarrow \urcorner B(a) \}</math>. <math>(4)</math>
#A set of sentences <math>\Im</math> and a number <math>n\geq1</math> of other sentences or statements <math>(\delta_1,\delta_2,.....\delta_n \ )</math> are logically compatible if, and only if, their union <math>\Im\cup{\delta_1,\delta_2.....\delta_n}</math> is coherent.
#A set of sentences <math>\Im</math> and a number <math>n\geq1</math> of other sentences or statements <math>(\delta_1,\delta_2,.....\delta_n \ )</math> are logically incompatible if, and only if, their union <math>\Im\cup{\delta_1,\delta_2.....\delta_n}</math> is incoherent.


Following the logical rules of predicates, there is no reason to say that denial (4) is contradictory or meaningless, therefore the neurologist (unlike the dentist) would not seem to have the logical tools to confirm his conclusion.{{q4|<!--153-->then the dentist triumphs!|<!--154-->don't take it for granted}}
Let's examine this concept with practical examples.


===Compatibility and incompatibility of the statements===
The dentist presents the following statement:
The complication lies in the fact that the dentist will present a series of statements as clinical reports such as the stratigraphy and CT of the TMJ, that indicate an anatomical flattening of the joint, axiography of the condylar traces with a reduction in kinematic convexity and a tracing EMG interference pattern in which an asymmetrical pattern on the masseters is highlighted. These assertions can easily be considered a contributing cause of the damage to the Temporomandibular Joint and, therefore, responsible for the 'Orofacial pain'.


Documents, reports and clinical evidence can be used to make the neurologist's assertion incompatible and the dentist's diagnostic conclusion compatible. To do this we must present some logical rules that describe the compatibility or incompatibility of the logic of classical language:
<math>\Im</math>: Following the personalized techniques suggested by Xin Liang et al.
#A set of sentences <math>\Im</math>, and a number <math>n\geq1</math> of other phrases or statements <math>(\delta_1,\delta_2,.....\delta_n \ )</math> are logically compatible if, and only if, the union between them <math>\Im\cup\{\delta_1,\delta_2.....\delta_n\}</math> is coherent.
<ref>{{cite book  
#A set of sentences <math>\Im</math>, and a number <math>n\geq1</math> of other phrases or statements <math>(\delta_1,\delta_2,.....\delta_n \ )</math> are logically incompatible if, and only if, the union between them <math>\Im\cup\{\delta_1,\delta_2.....\delta_n\}</math> is incoherent.
 
Let us try to follow this reasoning with practical examples:
 
The dentist colleague exposes the following sentence:
 
<math>\Im</math>: Following the personalized techniques suggested by Xin Liang et al.<ref>{{cite book  
  | autore = Liang X
  | autore = Liang X
  | autore2 = Liu S
  | autore2 = Liu S
Line 647: Line 743:
  | DOI = 10.1016/j.oooo.2017.05.514
  | DOI = 10.1016/j.oooo.2017.05.514
  | oaf = <!-- qualsiasi valore -->
  | oaf = <!-- qualsiasi valore -->
  }}</ref> who focuses on the quantitative microstructural analysis of the fraction of the bone value, the trabecular number, the trabecular thickness and the trabecular separation on each slice of the CT scan of a TMJ, it appears that Mary Poppins is affected by Temporomandibular Disorders (TMDs) and the consequence causes Orofacial Pain.
  }}</ref> that focuses on the quantitative microstructural analysis of the bone value fraction, trabecular number, trabecular thickness, and trabecular separation on each slice of a TMJ CT, it appears that Mary Poppins is affected by Temporomandibular Disorders (TMDs) and the consequence causes orofacial pain.


At this point, however, the thesis must be confirmed with further clinical and laboratory tests, and in fact the colleague produces a series of assertions that should pass the compatibility filter as described above, namely:
However, to further confirm the diagnosis, the dentist presents a series of additional assertions that should pass the compatibility filter described above, thus establishing a coherent basis for the diagnosis of TMD in Mary Poppins.


<math>\delta_1=</math> '''Bone remodelling:''' The flattening of the axiographic traces highlighted in figure 5 indicates the joint remodelling of the right TMJ of Mary Poppins, such a report can be correlated to a series of researches and articles that confirm how malocclusion can be associated with morphological changes in the temporomandibular joints, particularly when combined with the age as the presence of a chronic malocclusion can worsen the picture of bone remodelling.<ref>{{cite book  
'''<math>\delta_1=</math> Bone remodeling:''' The flattening of the axiographic traces shown in Figure 5 indicates the joint remodeling of Mary Poppins' right TMJ. This report can be related to a series of research and articles confirming how malocclusion can be associated with morphological changes of the temporomandibular joints, particularly if related to age. Indeed, the presence of chronic malocclusion can aggravate the scenario of bone remodeling.
<ref>{{cite book  
  | autore = Solberg WK
  | autore = Solberg WK
  | autore2 = Bibb CA
  | autore2 = Bibb CA
Line 668: Line 765:
  | DOI = 10.1016/0002-9416(86)90055-2
  | DOI = 10.1016/0002-9416(86)90055-2
  | oaf = <!-- qualsiasi valore -->
  | oaf = <!-- qualsiasi valore -->
  }}</ref> These scientific references determine the compatibility of the assertion.
  }}</ref> The provided scientific references support the compatibility of the assertion.


<math>\delta_2=</math> '''Sensitivity and specificity of the axiographic measurement:''' A study was conducted to verify the sensitivity and specificity of the data collected from a group of patients affected by temporomandibular joint disorders with an ARCUSdigma axiographic system<ref>[https://www.kavo.com/de-de/ KaVo Dental GmbH, Biberach / Ris]</ref>; it confirmed a sensitivity of the 84.21% and a 92.86% sensitivity for the right and left TMJs respectively, and a specificity of 93.75% and 95.65%.<ref>{{cite book  
'''<math>\delta_2=</math> Sensitivity and Specificity of the Axiographic Measurement:'''
 
A study was conducted to evaluate the sensitivity and specificity of the data obtained from a sample of patients with temporomandibular joint disorders, using the ARCUSdigma axiographic system.
<ref>[https://www.kavo.com/de-de/ KaVo Dental GmbH, Biberach / Ris]</ref>  
The results showed a sensitivity of 84.21% for the right TMJ and 92.86% for the left TMJ, with a specificity of 93.75% and 95.65%, respectively.
<ref>{{cite book  
  | autore = Kobs G
  | autore = Kobs G
  | autore2 = Didziulyte A
  | autore2 = Didziulyte A
Line 687: Line 789:
  | DOI =  
  | DOI =  
  | oaf = <!-- qualsiasi valore -->
  | oaf = <!-- qualsiasi valore -->
  }}</ref> These scientific references determine compatibility of the assertion in the dental context precisely because of the consistency of related studies.<ref>{{cite book  
  }}</ref> These scientifically validated data support the compatibility of the statement in the dental field, given the consistency of related studies.
<ref>{{cite book  
  | autore = Piancino MG
  | autore = Piancino MG
  | autore2 = Roberi L
  | autore2 = Roberi L
Line 707: Line 810:
  }}</ref>
  }}</ref>


<math>\delta_3=</math> '''Alteration of condylar paths:''' Urbano Santana-Mora and coll.<ref>{{cite book  
'''<math>\delta_3=</math> Alteration in Condylar Paths:'''
 
Urbano Santana-Mora and colleagues
<ref>{{cite book  
  | autore = López-Cedrún J
  | autore = López-Cedrún J
  | autore2 = Santana-Mora U
  | autore2 = Santana-Mora U
Line 727: Line 833:
  | DOI = 10.1038/sdata.2017.168
  | DOI = 10.1038/sdata.2017.168
  | oaf = YES<!-- qualsiasi valore -->
  | oaf = YES<!-- qualsiasi valore -->
  }}</ref> evaluated 24 adult patients suffering from severe chronic unilateral pain diagnosed as Temporomandibular Disorders (TMDs). The following functional and dynamic factors were evaluated:
  }}</ref> conducted a study on 24 adult patients suffering from severe chronic unilateral pain, diagnosed with Temporomandibular Disorders (TMD). The research focused on the analysis of various functional and dynamic factors, including masticatory function, the remodeling of the temporomandibular joint (TMJ) or condylar paths (CP), and lateral jaw movement or lateral guidance (LG).
 
The CPs were evaluated using conventional axiography, while the LG was examined through kinesiographic tracing analysis.
<ref>[https://www.myotronics.com/ Myotronics Inc., Kent, WA, US]</ref>
It was found that seventeen patients, corresponding to 71% of the total sample, habitually preferred to chew on one side. The mean and standard deviation of the CP angles were 47.90 (± 9.24) degrees, while the mean of the LG angles was 42.95 (± 11.78) degrees.


masticatory function; remodelling of the TMJ or condylar pathway (CP) and lateral movement of the jaw or lateral guide (LG).
The study results contributed to the definition of a new paradigm for TMDs, suggesting that the side affected by the disorder might coincide with the habitual chewing side, especially when the lateral mandibular cinematic angle is flatter. This parameter further supports the dental assertion regarding the correlation between chewing habits and the development of TMDs.


The CPs were assessed using conventional axiography and LG was assessed by using kinesiograph tracing<ref>[https://www.myotronics.com/ Myotronics Inc., Kent, WA, US]</ref>; Seventeen (71%) of the 24 (100%) patients consistently showed a side of habitual chewing side. The mean and standard deviation of the CP angles was 47.90 <math>\pm</math> 9.24) degrees. The average of LG angles was 42.95<math>\pm</math>11.78 degrees. <br>Data collection emerged from the conception of a new TMD paradigm in which the affected side could be the usual chewing side, the side where the mandibular lateral kinematic angle was flatter. This parameter may also be compatible with the dental claim.
'''<math>\delta_4=</math> EMG Interference Pattern:'''


<math>\delta_4=</math> '''EMG Intereference pattern:''' M.O. Mazzetto and coll.<ref>{{cite book  
M.O. Mazzetto and collaborators
<ref>{{cite book  
  | autore = Oliveira Mazzetto M
  | autore = Oliveira Mazzetto M
  | autore2 = Almeida Rodrigues C
  | autore2 = Almeida Rodrigues C
Line 751: Line 862:
  | DOI = 10.1590/0103-6440201302310
  | DOI = 10.1590/0103-6440201302310
  | oaf = <!-- qualsiasi valore -->
  | oaf = <!-- qualsiasi valore -->
  }}</ref> showed that the electromyographic activity of the anterior temporal muscles and the masseter was positively correlated with the "Craniomandibular index", indiced (CMI) with a <math>P=0,01</math> and suggesting that the use of CMI to quantify the severity of TMDs and EMG to assess the masticatory muscle function, may be an important diagnostic and therapeutic elements. These scientific references determine compatibility of the assertion.
  }}</ref> demonstrated that there is a positive correlation between the electromyographic activity of the anterior temporal muscles and the masseter and the 'Cranio-Mandibular Index' (CMI), with a value of <math>P=0,01</math>. This suggests that the use of CMI to quantify the severity of Temporomandibular Disorders (TMD) and electromyography (EMG) to assess the function of the masticatory muscles can represent a significant diagnostic and therapeutic element. Such scientific references support the compatibility of the assertion.


<math>\delta_n=</math> '''?'''
<math>\delta_n=?</math>


Obviously, the dentist colleague could endlessly keep on casting his statements, indefinitely.
Given the evidence presented and the statements made, the dentist can legitimately claim that the set of sentences <math>\Im</math>, and a number <math>n\geq1</math> of other positive clinical assertions or data <math>(\delta_1,\delta_2,.....\delta_n \ )</math>​ are logically compatible. This is because their union, <math>\Im\cup{\delta_1,\delta_2.....\delta_n}</math>, turns out to be coherent.


Well, ''all of these statements seem coherent'' with the sentence <math>\Im</math> initially described, whereby the dentist colleague feels justified in saying that the set of sentences <math>\Im</math>, and a number <math>n\geq1</math> of other assertions or clinical data <math>(\delta_1,\delta_2,.....\delta_n \ )</math> are logically compatible as the union between them <math>\Im\cup\{\delta_1,\delta_2.....\delta_n\}</math> is coherent.{{q4|<!--211-->Following the logic of classical language, the dentist is right!|<!--212-->It would seem so! <br><!--213-->But, be careful, only in his own dental context!}}
{{q2|Following classical language logic, the dentist is right!|It would seem so! But beware, only in their own dental context!}}


This statement is so true that the <math>P-value</math> could be infinitely extended, widened enough to obtain an <math>\alpha=0</math> that corresponds to it in an infinite significance, as long as it remains limited in its context; yet, without meaning anything from a clinical point of view in other contexts, like in the neurologist one, for instance.
This statement is so valid that the value of <math>P</math> could be extended indefinitely, even reaching an <math>\alpha=0</math>, which corresponds to infinite significance, as long as it remains within the specific context; however, it may not hold any significance in different contexts, such as the neurological one, for example.
==Final considerations==
From a perspective of observation of this kind, the Logic of Predicates can only fortify the dentist’s reasoning and, at the same time, strengthen the <u>principle of the excluded third</u>: the principle is strengthened through the compatibility of the additional assertions <math>(\delta_1,\delta_2,.....\delta_n \ )</math> which grant the dentist a complete coherence in the diagnosis and in confirming the sentence <math>\Im</math>: Poor Mary Poppins either has TMD, or she has not.{{q4|...<!--224-->and what if, with the advancement of research, new phenomena were discovered that would prove the neurologist right, instead of the dentist?|}}


Basically, given the compatibility of the assertions <math>(\delta_1,\delta_2,.....\delta_n \ )</math>, coherently saying that Orofacial Pain is caused by a Temporomandibular Disorders could become incompatible if another series of assertions <math>(\gamma_1,\gamma_2,.....\gamma_n \ )</math> were shown to be coherent: this would make a different sentence compatible <math>\Im</math>: could poor Mary Poppins suffer from Orofacial Pain from a neuromotor disorder (<sub>n</sub>OP) and not by a Temporomandibular Disorders?
==Final Considerations==
Within the scope of this observation, the application of Predicate Logic significantly contributes to strengthening the dentist's deductive process, concurrently solidifying the principle of excluded middle. This principle is emphasized by the coherence of the supplementary statements <math>(\delta_1,\delta_2,...,\delta_n)</math>, providing the dentist with a solid foundation for a coherent diagnosis and to affirm with certainty that 'Poor Mary Poppins is, without a shadow of a doubt, affected by TMD or not.'


In the current medical language logic, such assertions only remain assertions, because the convictions and opinions do not allow a consequent and quick change of the mindset.
{{q2|And what if, as research advances, new phenomena emerge supporting the neurologist's theories rather than the dentist's?|}}
----
In essence, considering the compatibility of the assertions <math>(\delta_1,\delta_2,.....\delta_n)</math>, coherently supporting that Orofacial Pain is caused by a Temporomandibular Disorder might become incompatible if another set of equally coherent assertions <math>(\gamma_1,\gamma_2,.....\gamma_n)</math> emerged. This scenario would pave the way for a new interpretation <math>\Im</math>: Mary Poppins could be suffering from Orofacial Pain due to a Neuromotor Disorder (<sub>n</sub>OP), not directly from Temporomandibular Disorders. Within the current medical language, such assertions remain purely theoretical, given that prevailing beliefs and opinions do not facilitate a rapid paradigm shift.


Moreover, taking into account the risk that this change entails, in fact, we might consider a recent article on the epidemiology of temporomandibular disorders<ref>{{cite book  
Considering also the risk associated with such a change, the analysis of recent studies on the epidemiology of Temporomandibular Disorders
| autore = LeResche L
<ref>{{cite book | autore = LeResche L | titolo = Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors | url = https://pubmed.ncbi.nlm.nih.gov/9260045/ | volume = | opera = Crit Rev Oral Biol Med | anno = 1997 | editore = | città = | ISBN = | PMID = 9260045 | PMCID = | DOI = 10.1177/10454411970080030401 | oaf = <!-- qualsiasi valore --> }}</ref> could prove useful. These studies indicate that, despite methodological and sampling differences, pain in the temporomandibular region is relatively common, affecting about 10% of the population. Therefore, it is reasonable to hypothesize that Mary Poppins could fall within this percentage, classifying her as a patient suffering from Orofacial Pain due to Temporomandibular Disorders (TMD).
| titolo = Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors
| url = https://pubmed.ncbi.nlm.nih.gov/9260045/
| volume =  
| opera = Crit Rev Oral Biol Med
| anno = 1997
| editore =  
| città =  
| ISBN =  
| PMID = 9260045
| PMCID =  
| DOI = 10.1177/10454411970080030401
| oaf = <!-- qualsiasi valore -->
}}</ref> in which the authors confirm that despite the methodological and population differences, pain in the temporomandibular region appears to be relatively common, occurring in about the 10% of the population; we may then objectively be led to hypothesize that our Mary Poppins can be included in the 10% of the patients mentioned in the epidemiological study, and contextually be classified as a patient suffering from Orofacial Pain from Temporomandibular Disorders (TMDs).


In conclusion, it is evident that a classical logic of language, which has an extremely dichotomous approach (either it is white or it is black), cannot depict the many shades that occur in real clinical situations.
In conclusion, adopting a classical dichotomous approach in medical language, which tends to categorize conditions in black or white, fails to capture the numerous nuances present in clinical realities. Therefore, exploring a more flexible and suitable linguistic approach is necessary...
We need to find a more convenient and suitable language logic...{{q4|... <!--237-->can we then think of a Probabilistic Language Logic?|<!--238-->perhaps}}


{{Btnav|The logic of medical language|The logic of probabilistic language}}
{{q2|Could we then consider adopting a probabilistic type of linguistic logic?|perhaps}}


{{Bib}}
{{Bib}}


{{apm}}
{{apm}}
<onlyinclude>  
<onlyinclude>
</onlyinclude><math>X\equiv</math>
</onlyinclude>

Latest revision as of 16:38, 19 October 2024

The logic of the classical language

 

Masticationpedia

 

Abstract: This chapter explores the complexities of medical language, particularly within the context of diagnosis and treatment of Temporomandibular Disorders (TMD) and Orofacial Pain (OP). Medical language often leads to misunderstandings due to its hybrid nature, blending everyday language with specialized terms, which can be interpreted differently across medical disciplines. This is exemplified in the clinical case of Mary Poppins, who has suffered from OP for over a decade, with conflicting diagnoses from a dentist and a neurologist. The dentist diagnosed her with TMD based on clinical tests like axiography, electromyography (EMG), and radiographic imaging, while the neurologist attributed her pain to a neuromotor disorder (nOP).

The chapter examines how classical logic language, used in traditional medical diagnostics, supports the dentist's diagnosis, focusing on the compatibility of evidence like condylar remodeling and masticatory muscle activity. However, the chapter also highlights the limitations of this approach, showing that new electrophysiological data could challenge the dentist’s assumptions and open the door to different interpretations of OP’s origins.

In light of this, the chapter introduces the concept of "system logic language," which moves beyond cause-and-effect models to consider the masticatory system as a complex, dynamic entity. This perspective encourages a more nuanced understanding of patient conditions, recognizing that symptoms may not always align neatly with classical diagnostic frameworks. By analyzing Mary Poppins' case through both classical and system logic, the chapter calls for a reevaluation of medical language and diagnostic approaches, proposing a shift toward probabilistic and interdisciplinary methods for more accurate diagnoses.

Ultimately, this chapter suggests that a deeper understanding of medical language and logic can improve clinical decision-making, reduce diagnostic errors, and foster a more comprehensive approach to patient care.

Introduction to the Logic of Medical Language

In the previous chapter, dedicated to the "Logic of Medical Language", we aimed to shift the focus from symptoms or clinical signs to an encrypted machine language. In this context, the arguments of Donald E. Stanley, Daniel G. Campos, and Pat Croskerry are particularly pertinent, especially when connected to the concept of time as an information vector (anticipating the symptom) and to the consideration of the message as a machine language rather than a verbal language). [1][2]

However, this does not lessen the importance of the clinical history, established on a pseudo-formal verbal language, which has now firmly entrenched itself in clinical practice and has proven its diagnostic effectiveness. Our aim in emphasizing a machine language and the system is merely to provide an additional opportunity to validate Medical-Diagnostic Science. We are fully aware that our "Linux Sapiens" remains puzzled by what has been anticipated and continues to ponder.

«Could the logic of classical language help us solve the dilemma of poor Mary Poppins?»
(A bit of patience, please)

We cannot limit ourselves to providing a conventional answer, as science progresses not through baseless assertions but through questions and reflections that have passed the scrutiny of scientific validation. This compels us to explore and give voice to thoughts, perplexities, and doubts raised by certain key concepts discussed in various scientific articles.

Among these critical topics is "Craniofacial Biology".

Craniofacial Biology

We begin with an influential study by Townsend and Brook, [3] in which the authors challenge the current research paradigm, both theoretical and applied, in "Craniofacial Biology", aiming to derive clinical considerations and implications. One aspect they address is the "Interdisciplinary Approach", through which Geoffrey Sperber and his son Steven recognized the potential for exponential growth in the field of "Craniofacial Biology" due to technological innovations such as gene sequencing, CT scans, MRI imaging, laser scanning, image analysis, ultrasound, and spectroscopy. [4]

Another topic of significant interest within 'Craniofacial Biology' is the recognition that biological systems are considered 'Complex Systems'. [5] 'Epigenetics' also plays a fundamental role in craniofacial molecular biology. Researchers from Adelaide and Sydney have provided an in-depth critique in the field of epigenetics, with a particular focus on dental and craniofacial disciplines. [6] Phenomics, in particular, explored by these authors (see Phenomics), is a research area dedicated to measuring changes in teeth and associated orofacial structures resulting from interactions between genetic, epigenetic, and environmental factors during development. [7] In this context, it is crucial to mention the work of Irma Thesleff from Helsinki, Finland, who highlighted the existence of numerous transient signaling centers in the dental epithelium that play key roles in the tooth development program. [8]

Additionally, the works by Peterkova R., Hovorakova M., Peterka M., and Lesot H., offer a fascinating overview of the processes involved in dental development. [9][10][11] For completeness, the studies by Han J., Menicanin D., Gronthos S., and Bartold P.M., which have explored a wide range of research on stem cells, tissue engineering, and periodontal regeneration, cannot be omitted. [12]

This review necessarily included discussions on genetic, epigenetic, and environmental influences that, during morphogenesis, lead to variations in the number, size, and shape of teeth, [13][14] as well as on the effect of tongue pressure on growth and craniofacial functions. [15][16] Furthermore, special mention is deserved for the exceptional work of Townsend and Brook, whose content aligns well with the reflections of another prominent author, HC Slavkin. Slavkin [17]asserts:

The future holds countless opportunities to significantly improve the clinical outcomes of both congenital and acquired craniofacial malformations. Clinicians play a crucial role, as critical thinking combined with clinical experience greatly enhances diagnostic accuracy, and consequently, health outcomes.

«I understand the progress of Science described by the authors but I do not understand the change in thought»
(Let me give you a practical example)

In the "Introduction", we raised some issues related to malocclusion. In this context, we examine the logic of the medical language used by the dentist when faced with the clinical case described in the "Introductory Chapter", including diagnostic and therapeutic conclusions.

The patient has a unilateral posterior crossbite and an anterior open bite. [18]The crossbite represents a deviation from normal occlusion [19] and is therefore treated concurrently with the open bite. [20][21] This reasoning suggests that the model (masticatory system) is 'normalized to occlusion'; inversely interpreted, it implies that an occlusal discrepancy is a cause of malocclusion, that is, a disorder of the Masticatory System. Hence, an intervention to restore proper masticatory function is justified. (Figure 1a).


This example is the classical logic language, as we will explain in detail, but now a doubt arises:

At the time of formulating the orthodontic and orthognathic axioms, which led to the creation of protocols ratified by the International Scientific Community, were the information discussed in the introduction to this chapter already known?

Certainly not, as the time is a vector of information. However, despite this cognitive limitation, we proceed by adopting a classic language logic that raises relevant issues for citizen safety.

«this statement seems a bit risky to me!»
(sure, but the logical sequence has already been anticipated)

If this case were analyzed through a mentality oriented towards a 'system language logic', which we will discuss in a dedicated chapter, the conclusions could be surprising.

Analyzing the electrophysiological responses obtained from the patient with malocclusion, represented in figures 1b, 1c, and 1d (with explanations provided directly in the captions to facilitate the debate), it clearly emerges that these data lead us to considerations quite different from the simple 'Malocclusion'. Therefore, the orthodontic and orthognathic axioms based on a 'cause/effect' relationship show a significant conceptual gap.


«So, how does the classic language logic connect to this context?»
(The contrast with the "system language logic" highlights the interpretive limits of traditional approaches to malocclusion. This suggests that orthodontic models of cause/effect might need a critical review in light of new electrophysiological evidence.)

Mathematical Formalism

In this chapter, we will revisit the clinical case of Mary Poppins, who has been suffering from Orofacial Pain for over ten years, with a diagnosis of "Temporomandibular Disorder" (TMD) confirmed by her dentist, or, more specifically, Orofacial Pain associated with TMD. To understand the complexity in arriving at a precise diagnostic definition using Classic Language Logic, it is fundamental to introduce and analyze the concept at the basis of the philosophy of classical language.

Propositions

"The simplest propositions can be combined with each other to form new and more complex propositions through the use of logical operators and quantifier connectors. These tools of logic allow us to construct broader statements starting from basic concepts, thus facilitating the formulation of theorems and proofs in mathematics and other disciplines that require precision and rigor.

The fundamental logical operators include:

  • Conjunction, denoted by the symbol (and): represents the logical operation "AND". A compound proposition formed by two propositions joined with "and" is true only if both propositions are true.
  • Disjunction, denoted by the symbol (or): represents the logical operation "OR". A compound proposition is true if at least one of the component propositions is true.
  • Negation, denoted by the symbol (not): reverses the truth value of a proposition. If a proposition is true, its negation is false, and vice versa.
  • Implication, denoted by the symbol ⇒ (if... then): expresses a conditional relationship between two propositions. If the antecedent (first proposition) is true, then the consequent (second proposition) must be true for the implication to be true.
  • Logical consequence, denoted by the symbol (it follows that): indicates that a proposition is a logical consequence of the previous ones within a given logical system.
  • Universal quantifier, denoted by the symbol (for all): expresses that the following proposition is true for all elements of a certain set.
  • Proof, often indicated by reasonings that lead to the conclusion symbolized with (thus): indicates the culmination of an argument or logical reasoning that leads to a conclusion.
  • Membership, denoted by the symbol (belongs to) or (does not belong to): used to indicate whether an element belongs or does not belong to a set.

Quantifier connectors, such as the universal quantifier () and the existential quantifier (), allow for extending statements to sets of elements, offering a way to express propositions concerning 'all elements' of a certain set or 'at least one element' of such a set.

By combining these tools, it is possible to construct complex propositions that serve as the foundation for logical arguments and mathematical reasoning, eliminating the ambiguities typical of common language and providing a clear structure for analysis and proof."

Proof by Contradiction

In classical logic, there exists a principle called "the law of excluded middle", which asserts that a proposition, which cannot be false, must be considered true, since there is no third possibility.

Suppose we have to prove that the proposition p is true. The procedure consists of demonstrating that assuming to be false leads to a logical contradiction. Consequently, the proposition cannot be false and, therefore, according to the law of excluded middle, must be true. This method of proof is known as proof by contradiction.[22]

Predicates

What has been briefly described so far represents the logic of propositions, which asserts something about specific mathematical objects. Examples of propositions include: "2 is greater than 1, therefore 1 is less than 2" or "a square does not have 5 sides, therefore it cannot be a pentagon". Often, however, mathematical statements are not limited to individual objects but refer to generic objects within a set, as in the expression "the elements are taller than 2 meters", where indicates a generic group (for example, all volleyball players). In these cases, we talk about predicates.

Intuitively, a predicate is a sentence that concerns a set of elements (which, in our medical context, would be the patients) and makes a statement about them.

«So, does Mary Poppins suffer from TMD or not?»
(let's see what classical language logic tells us)

In addition to the confirmations derived from the medical language logic discussed in the previous chapter, the dentist acquires further instrumental data that strengthen his diagnosis. These tests include the analysis of axiographic traces, obtained through the use of a custom-made functional paraocclusal fork. This tool allows for the visualization and quantification of the condylar paths during masticatory functions. As shown in Figure 4, the flattening of the condylar traces on the right side, both in the mediotrusive masticatory kinetics (indicated in green) and in the opening and protrusion cycles (in grey), confirms the anatomical and functional flattening of the right TMJ during the dynamics of mastication.

In addition to axiography, surface electromyography on the masseter muscles is performed (see Figure 6), during which the patient is asked to exert maximum muscle force. This type of electromyographic analysis, called 'EMG Interferential Pattern', is characterized by the high-frequency content of the peaks showing phase interference. Indeed, Figure 6 highlights an asymmetry in the recruitment of motor units between the right masseter (upper trace) and the left masseter (lower trace).

[23][24][25][26]

2nd Clinical Approach

(Hover over the images)


Propositions in the Dental Context

In an attempt to apply mathematical formalism to interpret the dentist's diagnostic conclusions using classical logic language, we define the following predicates:

Normal patients (where "normal" refers to patients commonly encountered in a specialist setting) Presence of bone remodeling with detected osteophyte from stratigraphic exams and condylar CT Temporomandibular Disorders (TMD) resulting in orofacial pain (OP) Specific patient: Mary Poppins We establish that for every normal patient , if they test positive for the TMJ radiographic examination [see Figures 2 and 3], then they are affected by TMD. Consequently if Mary Poppins tests positive (and is considered a "normal patient") for the TMJ radiographic exam , it follows that she too is affected by TMD . This can be formally expressed as:

In addition to proving that a certain set of premises implies a particular conclusion, predicate logic is also used to prove the falsity of a statement or the logical compatibility/incompatibility of a certain piece of knowledge with a given piece of evidence.

To verify the truthfulness of this proposition, we resort to proof by contradiction. If the negation of the proposition generates a contradiction, we can conclude that the original hypothesis of the dentist is correct:

Statement (2) asserts that it is not true that patients who test positive for the TMJ CT are affected by TMD, implying that Mary Poppins (a "normal patient" with a positive outcome for the TMJ CT) is not affected by TMD.

The dentist believes that this statement, based on the provided premises, constitutes a contradiction, thereby confirming the validity of the main statement.

Propositions in the Neurological Context

Suppose the neurologist contests conclusion (1), arguing that Mary Poppins does not suffer from TMD or that, at least, TMD is not the primary cause of her Orofacial Pain. Instead, he hypothesizes that Mary suffers from neuromotor type Orofacial Pain (nOP), classifying her not as a 'normal patient' but as a 'specific patient' (atypical for the dental specialist).

The neurologist's position can be formalized as follows:

This statement (3) claims that there might exist a patient with a positive outcome for the TMJ CT who does not suffer from TMD. To validate this hypothesis through proof by contradiction, consider its negation:

Analyzing predicate logic, we find no sufficient reasons to believe that negation (4) leads to a contradiction, indicating that the neurologist, unlike the dentist, may not have sufficient logical grounds to confirm his conclusion without further evidence.

«so the dentist triumphs!»
(don't take it for granted)

Compatibility and Incompatibility of Statements

The complexity arises when the dentist presents a series of statements based on clinical reports, such as stratigraphy and computed tomography (CT) of the temporomandibular joint (TMJ), indicating an anatomical flattening of the joint, axiography of the condylar paths with a reduction of cinematic convexity, and an electromyographic (EMG) interference pattern showing asymmetry on the masseters. These evidences can be considered co-causes of damage to the temporomandibular joint and, consequently, responsible for "Orofacial Pain".

Documents, reports, and clinical evidence can be used to make the neurologist's statement incompatible and support the dentist's diagnostic conclusion. To do this, we present some logical rules that describe compatibility or incompatibility according to classical language logic:

  1. A set of sentences and a number of other sentences or statements are logically compatible if, and only if, their union is coherent.
  2. A set of sentences and a number of other sentences or statements are logically incompatible if, and only if, their union is incoherent.

Let's examine this concept with practical examples.

The dentist presents the following statement:

: Following the personalized techniques suggested by Xin Liang et al. [27] that focuses on the quantitative microstructural analysis of the bone value fraction, trabecular number, trabecular thickness, and trabecular separation on each slice of a TMJ CT, it appears that Mary Poppins is affected by Temporomandibular Disorders (TMDs) and the consequence causes orofacial pain.

However, to further confirm the diagnosis, the dentist presents a series of additional assertions that should pass the compatibility filter described above, thus establishing a coherent basis for the diagnosis of TMD in Mary Poppins.

Bone remodeling: The flattening of the axiographic traces shown in Figure 5 indicates the joint remodeling of Mary Poppins' right TMJ. This report can be related to a series of research and articles confirming how malocclusion can be associated with morphological changes of the temporomandibular joints, particularly if related to age. Indeed, the presence of chronic malocclusion can aggravate the scenario of bone remodeling. [28] The provided scientific references support the compatibility of the assertion.

Sensitivity and Specificity of the Axiographic Measurement:

A study was conducted to evaluate the sensitivity and specificity of the data obtained from a sample of patients with temporomandibular joint disorders, using the ARCUSdigma axiographic system. [29] The results showed a sensitivity of 84.21% for the right TMJ and 92.86% for the left TMJ, with a specificity of 93.75% and 95.65%, respectively. [30] These scientifically validated data support the compatibility of the statement in the dental field, given the consistency of related studies. [31]

Alteration in Condylar Paths:

Urbano Santana-Mora and colleagues [32] conducted a study on 24 adult patients suffering from severe chronic unilateral pain, diagnosed with Temporomandibular Disorders (TMD). The research focused on the analysis of various functional and dynamic factors, including masticatory function, the remodeling of the temporomandibular joint (TMJ) or condylar paths (CP), and lateral jaw movement or lateral guidance (LG).

The CPs were evaluated using conventional axiography, while the LG was examined through kinesiographic tracing analysis. [33] It was found that seventeen patients, corresponding to 71% of the total sample, habitually preferred to chew on one side. The mean and standard deviation of the CP angles were 47.90 (± 9.24) degrees, while the mean of the LG angles was 42.95 (± 11.78) degrees.

The study results contributed to the definition of a new paradigm for TMDs, suggesting that the side affected by the disorder might coincide with the habitual chewing side, especially when the lateral mandibular cinematic angle is flatter. This parameter further supports the dental assertion regarding the correlation between chewing habits and the development of TMDs.

EMG Interference Pattern:

M.O. Mazzetto and collaborators [34] demonstrated that there is a positive correlation between the electromyographic activity of the anterior temporal muscles and the masseter and the 'Cranio-Mandibular Index' (CMI), with a value of . This suggests that the use of CMI to quantify the severity of Temporomandibular Disorders (TMD) and electromyography (EMG) to assess the function of the masticatory muscles can represent a significant diagnostic and therapeutic element. Such scientific references support the compatibility of the assertion.

Given the evidence presented and the statements made, the dentist can legitimately claim that the set of sentences , and a number of other positive clinical assertions or data ​ are logically compatible. This is because their union, , turns out to be coherent.

«Following classical language logic, the dentist is right!»
(It would seem so! But beware, only in their own dental context!)

This statement is so valid that the value of could be extended indefinitely, even reaching an , which corresponds to infinite significance, as long as it remains within the specific context; however, it may not hold any significance in different contexts, such as the neurological one, for example.

Final Considerations

Within the scope of this observation, the application of Predicate Logic significantly contributes to strengthening the dentist's deductive process, concurrently solidifying the principle of excluded middle. This principle is emphasized by the coherence of the supplementary statements , providing the dentist with a solid foundation for a coherent diagnosis and to affirm with certainty that 'Poor Mary Poppins is, without a shadow of a doubt, affected by TMD or not.'

«And what if, as research advances, new phenomena emerge supporting the neurologist's theories rather than the dentist's?»

In essence, considering the compatibility of the assertions , coherently supporting that Orofacial Pain is caused by a Temporomandibular Disorder might become incompatible if another set of equally coherent assertions emerged. This scenario would pave the way for a new interpretation : Mary Poppins could be suffering from Orofacial Pain due to a Neuromotor Disorder (nOP), not directly from Temporomandibular Disorders. Within the current medical language, such assertions remain purely theoretical, given that prevailing beliefs and opinions do not facilitate a rapid paradigm shift.

Considering also the risk associated with such a change, the analysis of recent studies on the epidemiology of Temporomandibular Disorders [35] could prove useful. These studies indicate that, despite methodological and sampling differences, pain in the temporomandibular region is relatively common, affecting about 10% of the population. Therefore, it is reasonable to hypothesize that Mary Poppins could fall within this percentage, classifying her as a patient suffering from Orofacial Pain due to Temporomandibular Disorders (TMD).

In conclusion, adopting a classical dichotomous approach in medical language, which tends to categorize conditions in black or white, fails to capture the numerous nuances present in clinical realities. Therefore, exploring a more flexible and suitable linguistic approach is necessary...

«Could we then consider adopting a probabilistic type of linguistic logic?»
(perhaps)
Bibliography & references
  1. Stanley DE, Campos DG, «The logic of medical diagnosis», in Perspect Biol Med, 2013».
    PMID:23974509
    DOI:10.1353/pbm.2013.0019 
  2. Croskerry P, «Adaptive expertise in medical decision making», in Med Teach, 2018».
    PMID:30033794
    DOI:10.1080/0142159X.2018.1484898 
  3. Townsend GC, Brook AH, «The face, the future, and dental practice: how research in craniofacial biology will influence patient care», in Aust Dent J, Australian Dental Association, 2014».
    PMID:24646132
    DOI:10.1111/adj.12157 
  4. Sperber GH, Sperber SM, «The genesis of craniofacial biology as a health science discipline», in Aust Dent J, Australian Dental Association, 2014».
    PMID:24495071
    DOI:10.1111/adj.12131 
  5. Brook AH, Brook O'Donnell M, Hone A, Hart E, Hughes TE, Smith RN, Townsend GC, «General and craniofacial development are complex adaptive processes influenced by diversity», in Aust Dent J, Australian Dental Association, 2014».
    PMID:24617813
    DOI:10.1111/adj.12158 
  6. Williams SD, Hughes TE, Adler CJ, Brook AH, Townsend GC, «Epigenetics: a new frontier in dentistry», in Aust Dent J, Australian Dental Association, 2014».
    PMID:24611746
    DOI:10.1111/adj.12155 
  7. Yong R, Ranjitkar S, Townsend GC, Brook AH, Smith RN, Evans AR, Hughes TE, Lekkas D, «Dental phenomics: advancing genotype to phenotype correlations in craniofacial research», in Aust Dent J, Australian Dental Association, 2014».
    PMID:24611797
    DOI:10.1111/adj.12156 
  8. Thesleff I, «Current understanding of the process of tooth formation: transfer from the laboratory to the clinic», in Aust Dent J, 2013».
    DOI:10.1111/adj.12102 
  9. Peterkova R, Hovorakova M, Peterka M, Lesot H, «Three‐dimensional analysis of the early development of the dentition», in Aust Dent J, Wiley Publishing Asia Pty Ltd on behalf of Australian Dental Association, 2014».
    DOI:10.1111/adj.12130 
  10. Lesot H, Hovorakova M, Peterka M, Peterkova R, «Three‐dimensional analysis of molar development in the mouse from the cap to bell stage», in Aust Dent J, 2014».
    DOI:10.1111/adj.12132 
  11. Hughes TE, Townsend GC, Pinkerton SK, Bockmann MR, Seow WK, Brook AH, Richards LC, Mihailidis S, Ranjitkar S, Lekkas D, «The teeth and faces of twins: providing insights into dentofacial development and oral health for practising oral health professionals», in Aust Dent J, 2013».
    DOI:10.1111/adj.12101 
  12. Han J, Menicanin D, Gronthos S, Bartold PM, «Stem cells, tissue engineering and periodontal regeneration», in Aust Dent J, 2013».
    DOI:10.1111/adj.12100 
  13. {{Cite book | autore = Brook AH | autore2 = Jernvall J | autore3 = Smith RN | autore4 = Hughes TE | autore5 = Townsend GC | titolo = The Dentition: The Outcomes of Morphogenesis Leading to Variations of Tooth Number, Size and Shape | url = https://onlinelibrary.wiley.com/doi/epdf/10.1111/adj.12160 | volume = | opera = Aust Dent J | anno = 2014 | editore = | città = | ISBN = | PMID = | PMCID = | DOI = 10.1111/adj.12160 | oaf = | LCCN = | OCLC =
  14. Seow WK, «Developmental defects of enamel and dentine: challenges for basic science research and clinical management», in Aust Dent J, 2014».
    PMID:24164394
    DOI:10.1111/adj.12104 
  15. Kieser JA, Farland MG, Jack H, Farella M, Wang Y, Rohrle O, «The role of oral soft tissues in swallowing function: what can tongue pressure tell us?», in Aust Dent J, 2013».
    DOI:10.1111/adj.12103 
  16. Slavkin HC, «Research on Craniofacial Genetics and Developmental Biology: Implications for the Future of Academic Dentistry», in J Dent Educ, 1983».
    PMID:6573384 
  17. Slavkin HC, «The Future of Research in Craniofacial Biology and What This Will Mean for Oral Health Professional Education and Clinical Practice», in Aust Dent J, 2014».
    PMID:24433547
    DOI:10.1111/adj.12105 
  18. Littlewood SJ, Kandasamy S, Huang G, «Retention and relapse in clinical practice», in Aust Dent J, 2017».
    DOI:10.1111/adj.12475 
  19. Miamoto CB, Silva Marques L, Abreu LG, Paiva SM, «Impact of two early treatment protocols for anterior dental crossbite on children’s quality of life», in Dental Press J Orthod, 2018». 
  20. Alachioti XS, Dimopoulou E, Vlasakidou A, Athanasiou AE, «Amelogenesis imperfecta and anterior open bite: Etiological, classification, clinical and management interrelationships», in J Orthod Sci, 2014».
    DOI:10.4103/2278-0203.127547 
  21. Mizrahi E, «A review of anterior open bite», in Br J Orthod, 1978».
    PMID:284793
    DOI:10.1179/bjo.5.1.21 
  22. «[1]» – in «Argumentation and Non-Monotonic Reasoning - An LPNMR Workshop». 
  23. Castroflorio T, Talpone F, Deregibus A, Piancino MG, Bracco P, «Effects of a Functional Appliance on Masticatory Muscles of Young Adults Suffering From Muscle-Related Temporomandibular Disorder», in J Oral Rehabil, 2004».
    PMID:15189308
    DOI:10.1111/j.1365-2842.2004.01274.x 
  24. Maeda N, Kodama N, Manda Y, Kawakami S, Oki K, Minagi S, «Characteristics of Grouped Discharge Waveforms Observed in Long-term Masseter Muscle Electromyographic Recording: A Preliminary Study», in Acta Med Okayama, Okayama University Medical School, 2019, Okayama, Japan».
    PMID:31439959
    DOI:10.18926/AMO/56938 
  25. Rudy TE, «Psychophysiological Assessment in Chronic Orofacial Pain», in Anesth Prog, American Dental Society of Anesthesiology, 1990».
    ISSN: 0003-3006/90
    PMID:2085203 - PMCID:PMC2190318 
  26. Woźniak K, Piątkowska D, Lipski M, Mehr K, «Surface electromyography in orthodontics - a literature review», in Med Sci Monit, 2013».
    e-ISSN: 1643-3750
    PMID:23722255 - PMCID:PMC3673808
    DOI:10.12659/MSM.883927 
  27. Liang X, Liu S, Qu X, Wang Z, Zheng J, Xie X, Ma G, Zhang Z, Ma X, «Evaluation of Trabecular Structure Changes in Osteoarthritis of the Temporomandibular Joint With Cone Beam Computed Tomography Imaging», in Oral Surg Oral Med Oral Pathol Oral Radiol, 2017».
    PMID:28732700
    DOI:10.1016/j.oooo.2017.05.514 
  28. Solberg WK, Bibb CA, Nordström BB, Hansson TL, «Malocclusion Associated With Temporomandibular Joint Changes in Young Adults at Autopsy», in Am J Orthod, 1986».
    PMID:3457531
    DOI:10.1016/0002-9416(86)90055-2 
  29. KaVo Dental GmbH, Biberach / Ris
  30. Kobs G, Didziulyte A, Kirlys R, Stacevicius M, «Reliability of ARCUSdigma (KaVo) in Diagnosing Temporomandibular Joint Pathology», in Stomatologija, 2007».
    PMID:17637527 
  31. Piancino MG, Roberi L, Frongia G, Reverdito M, Slavicek R, Bracco P, «Computerized axiography in TMD patients before and after therapy with 'function generating bites'», in J Oral Rehabil, 2008».
    PMID:18197841
    DOI:10.1111/j.1365-2842.2007.01815.x 
  32. López-Cedrún J, Santana-Mora U, Pombo M, Pérez Del Palomar A, Alonso De la Peña V, Mora MJ, Santana U, «Jaw Biodynamic Data for 24 Patients With Chronic Unilateral Temporomandibular Disorder», in Sci Data, 2017».
    PMID:29112190 - PMCID:PMC5674825
    DOI:10.1038/sdata.2017.168
    Open Access logo green alt2.svg
    This is an Open Access resource!
     
  33. Myotronics Inc., Kent, WA, US
  34. Oliveira Mazzetto M, Almeida Rodrigues C, Valencise Magri L, Oliveira Melchior M, Paiva G, «Severity of TMD Related to Age, Sex and Electromyographic Analysis», in Braz Dent J, 2014».
    DOI:10.1590/0103-6440201302310 
  35. LeResche L, «Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors», in Crit Rev Oral Biol Med, 1997».
    PMID:9260045
    DOI:10.1177/10454411970080030401 
Wiki.png