Difference between revisions of "5° Clinical case: Spontaneous Electromyographic Activity"

 
(12 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Versions
{{main menu}}
| en = 5° Clinical case: Spontaneous Electromyographic Activity
| it = 5° Caso clinico: Attività Elettromiografica Spontanea
| fr = '5° Cas clinique : Activité électromyographique spontanée'
| de = '5° Klinischer Fall: Spontane elektromyographische Aktivität'
| es = '5° Caso Clínico: Actividad Electromiográfica Espontánea'
| pt = <!-- portoghese -->
| ru = <!-- russo -->
| pl = <!-- polacco -->
| fi = <!-- finlandese/suomi -->
| ca = <!-- catalano -->
| ja = <!-- giapponese -->
}}


{{ArtBy|autore=Gianni Frisardi}}
'''Abstract:'''This chapter delves into the complex and often debated topic of electromyography (EMG) in resting muscles, especially in patients with Orofacial Pain (OP) and Temporomandibular Disorders (TMDs). The central question revolves around whether a muscle at rest is truly silent or exhibits motor unit activity. Several studies, including those by Zieliński et al. and Fernández-de-Las-Peñas et al., have shown that changes in electromyographic patterns of masticatory muscles may be linked to myofascial trigger points (MTrPs) and TMDs. The presence of altered EMG activity in muscles at rest could be indicative of associated pain or dysfunction in masticatory and neck-shoulder muscles.


[[File:EMG Propofol.jpeg|left|200x200px]]
The article explores the relationship between depression and resting masticatory muscle activity, as depression is known to affect the stomatognathic system. However, a key question remains: how relevant is EMG activity in resting muscles to a patient’s psychological state? This article presents the 5th clinical case study of a 65-year-old female patient suffering from Orofacial Pain and TMD, where traditional diagnostic approaches failed to uncover the true underlying condition. Through advanced EMG techniques, including surface and needle EMG, spontaneous motor unit activity was observed, revealing the presence of "involuntary EMG activity" that likely originated from a central pacemaker, rather than muscle fiber or motor neuron damage.
Quando si affrontano argomenti riguardanti il Dolore orofacciale (OP) oppure la Disordini Temporomandibolari (TMDs) spesso ci si imbatte in affermazioni suscettibili di maggiori attenzioni quali l'affermazione  l'influenza del crossbite posteriore unilaterale sulle variazioni dell'attività muscolare spontanea nella posizione di riposo mandibolare e nella massima contrazione volontaria.Queste affermazioni inducono ad una più profonda conoscenza del fenomeno della attività spontanea delle Unità Motorie (MUs) che non è banale visto la complessità dei fattori e dei processi coinvolti in questa manifestazione clinica. Per questo motivo presentiamo un 5° Clinical case: Spontaneous Electromyographic Activity inn un soggetto riferito con precedente diagnosi di TMDs. Alla fine del capitolo si capirà il nostro suggerimento riguardo alla maggiore attenzione nel progettare la sperimentazione nel campo della neurofisiologia trigeminale.


{{ArtBy|autore=Gianni Frisardi}}
An experimental pharmacological study using Propofol was conducted to decouple brainstem activity from cortical control. The study's results demonstrated that the patient’s EMG activity ceased upon Propofol administration, providing evidence of a central origin of the pacemaker activity, independent of brainstem functions. This led to a final diagnosis of Focal Oromandibular Dystonia rather than TMD.


=== Introduzione ===
The article concludes by emphasizing the importance of considering neurological factors, such as involuntary EMG activity driven by a central pacemaker, in diagnosing and treating OP and TMD. It advocates for a more comprehensive neuro-electrophysiological approach, integrating techniques like bilateral trigeminal motor evoked potentials (bRoot-MEPs) to better understand the functional and organic aspects of TMDs. This case underscores the potential for misdiagnosis when relying solely on traditional gnathological and EMG methods without deeper neurophysiological exploration.
===Introduction ===
   
   
In this chapter we will address another subject, much discussed but also much followed and proposed as a diagnostic test in particular in patients with Orofacial Pain (OP) and Temporomandibular Disorders (TMDs), that of electromyography in a muscle in resting conditions which causes immediately the usual Hamletic question:


In questo capitolo affronteremo un altro argomento, molto discusso ma anche molto seguito e proposto come test diagnostico in particolare nei pazienti con Dolore Orofacciale (OP) e con Disordini Temporomandibolari (TMDs), quello della elettromiografia in un muscolo in condizioni di riposo che fa sorgere immediatamente il solito quesito Amletico:
{{q2|Is a muscle at rest in a state of motor unit activity or is it silent?|... maybe!!}}


{{q2| Un muscolo a riposo è in uno stato di attività delle unità motorie oppure è silente?|....chissà!}}
Zieliński et al.<ref>{{cita libro
| autore = Zieliński G
| autore2 = Byś A
| autore3 = Szkutnik J
| autore4 = Majcher P
| autore5 = Ginszt M
| titolo = Electromyographic Patterns of Masticatory Muscles in Relation to Active Myofascial Trigger Points of the Upper Trapezius and Temporomandibular Disorders
| url = https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063936/pdf/diagnostics-11-00580.pdf
| volume =
| opera = Diagnostics (Basel)
| anno = 2021
| editore =
| città =
| ISBN =
| DOI = 10.3390/diagnostics11040580
| PMID = 33805008
| PMCID = PMC8063936
| oaf = y<!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref> noted that changes in electromyographic patterns of masticatory muscles may be associated with the presence of pain due to active myofascial trigger points (MTrPs)<ref>{{cita libro
| autore = Fernández-de-Las-Peñas C
| autore2 = Galán-Del-Río F
| autore3 = Alonso-Blanco C
| autore4 = Jiménez-García R
| autore5 = Arendt-Nielsen L
| autore6 = Svensson P
| titolo = Referred Pain from Muscle Trigger Points in the Masticatory and Neck-Shoulder Musculature in Women with Temporomandibular Disoders
| url = https://pubmed.ncbi.nlm.nih.gov/20494623/
| volume =
| opera = J Pain
| anno = 2010
| editore = Elsevier
| città =
| ISBN =
| DOI = 10.1016/j.jpain.2010.03.005
| PMID = 20494623
| PMCID =
| oaf = <!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref><ref>{{cita libro
| autore = Peck C
| autore2 = Murray G
| autore3 = Gerzina T
| titolo = How Does Pain Affect Jaw Muscle Activity? The Integrated Pain Adaptation Model
| url =
| volume =
| opera = Aust Dent J
| anno = 2008
| editore =
| città =
| ISBN =
| DOI = 10.1111/j.1834-7819.2008.00050.x
| PMID = 18782363
| PMCID =
| oaf = <!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref><ref>{{cita libro
| autore = Pietropaoli D
| autore2 = Ortu E
| autore3 = Giannoni M
| autore4 = Cattaneo R
| autore5 = Mummolo A
| autore6 = Monaco A
| titolo = Alterations in Surface Electromyography Are Associated with Subjective Masticatory Muscle Pain
| url = https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893259/pdf/PRM2019-6256179.pdf
| volume =
| opera = Pain Res Manag
| anno = 2019
| editore =
| città =
| ISBN =
| DOI = 10.1155/2019/6256179
| PMID = 31885756
| PMCID = PMC6893259
| oaf = y<!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref><ref>{{cita libro
| autore = Manfredini D
| autore2 = Cocilovo F
| autore3 = Favero L
| autore4 = Ferronato G
| autore5 = Tonello S
| autore6 = Guarda-Nardini L
| titolo = Surface Electromyography of Jaw Muscles and Kinesiographic Recordings: Diagnostic Accuracy for Myofascial Pain
| url = https://pubmed.ncbi.nlm.nih.gov/21480942/
| volume =
| opera = J Oral Rehabil
| anno = 2011
| editore = Blackwell Publishing Ltd
| città = Hoboken, New Jersey, USA
| ISBN =
| DOI = 10.1111/j.1365-2842.2011.02218.x
| PMID = 21480942
| PMCID =
| oaf = <!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref><ref>{{cita libro
| autore = Simons DG
| autore2 = Travell JG
| autore3 = Simons LS
| titolo = Travell & Simons’ Myofascial Pain and Dysfunction: The Trigger Point Manual
| url =
| volume =
| opera =
| anno = 1999
| editore = Williams & Wilkins
| città = Baltimore, MD, USA
| ISBN = 978-0683083637
| DOI =
| PMID =
| PMCID =
| oaf = <!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref> and furthermore, during electromyography examination, significantly higher values of activity at rest within the anterior temporalis muscle were observed among MTrPs and TMDs patients compared to healthy individuals. The authors conclude that this altered pattern may be related to the presence of active MTrPs in the trapezius muscle, which, as a result of a referred pain mechanism, alters the activity of the anterior temporal (TA) 


Zieliński et al.<ref>Grzegorz Zieliński, Aleksandra Byś, Jacek Szkutnik, Piotr Majcher, Michał Ginszt. Electromyographic Patterns of Masticatory Muscles in Relation to Active Myofascial Trigger Points of the Upper Trapezius and Temporomandibular Disorders. Diagnostics (Basel) 2021 Apr; 11(4): 580.  Published online 2021 Mar 24. doi: 10.3390/diagnostics11040580 PMCID: PMC8063936</ref> hanno notato che i cambiamenti nei pattern elettromiografici dei muscoli masticatori possono essere associati alla presenza di dolore dovuto a myofascial trigger points  attivi (MTrP).<ref>Fernández-de-Las-Peñas C., Galán-Del-Río F., Alonso-Blanco C., Jiménez-García R., Arendt-Nielsen L., Svensson P. Referred Pain from Muscle Trigger Points in the Masticatory and Neck-Shoulder Musculature in Women with Temporomandibular Disoders. J. Pain. 2010;11:1295–1304. doi: 10.1016/j. jpain.2010.03.005.</ref><ref>Peck C., Murray G., Gerzina T. How Does Pain Affect Jaw Muscle Activity? The Integrated Pain Adaptation Model. Aust. Dent. J. 2008;53:201–207. doi: 10.1111/j.1834-7819.2008.00050.x.</ref> <ref>Ginszt M., Zieliński G., Berger M., Szkutnik J., Bakalczuk M., Majcher P. Acute Effect of the Compression Technique on the Electromyographic Activity of the Masticatory Muscles and Mouth Opening in Subjects with Active Myofascial Trigger Points. Appl. Sci. 2020;10:7750. doi: 10.3390/app10217750.</ref><ref>Pietropaoli D., Ortu E., Giannoni M., Cattaneo R., Mummolo A., Monaco A. Alterations in Surface Electromyography Are Associated with Subjective Masticatory Muscle Pain. Pain Res. Manag. 2019;2019:6256179. doi: 10.1155/2019/6256179. </ref><ref>Manfredini D., Cocilovo F., Favero L., Ferronato G., Tonello S., Guarda-Nardini L. Surface Electromyography of Jaw Muscles and Kinesiographic Recordings: Diagnostic Accuracy for Myofascial Pain. J. Oral Rehabil. 2011;38:791–799. doi: 10.1111/j.1365-2842.2011.02218.x. </ref><ref>Simons D.G., Travell J.G., Simons L.S. Travell & Simons’ Myofascial Pain and Dysfunction: The Trigger Point Manual. 2nd ed. Williams & Wilkins; Baltimore, MD, USA: 1999.</ref> ed inoltre, durante l'esame elettromiografico, sono stati osservati valori significativamente più elevati di attività a riposo all'interno del muscolo temporale anteriore tra i pazienti MTrPs e TMDs rispetto agli individui sani. Gli autori concludono considerando che questo modello alterato possa essere correlato alla presenza di MTrP attivi nel muscolo trapezio, che, come risultato di un meccanismo di dolore riferito, altera l'attività del Temporale Anteriore (TA)
Furthermore, the same author<ref>{{cita libro
| autore = Zieliński G
| autore2 = Byś A
| autore3 = Ginszt M
| autore4 = Baszczowski JS
| autore5 = Majcher P
| autore6 = Gawda P
| titolo = Depression and Resting Masticatory Muscle Activity
| url = https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230290/pdf/jcm-09-01097.pdf
| volume =
| opera = J Clin Med
| anno = 2020
| editore =
| città =
| ISBN =
| DOI = 10.3390/jcm9041097
| PMID = 32290557
| PMCID = PMC7230290
| oaf = y<!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref> has reviewed numerous clinical studies demonstrating that depression has a substantial effect on the stomatognathic system, including the activity of the masticatory muscles, which can lead to temporomandibular disorders. Furthermore, an increase in the bioelectrical activity of the masseter muscles was observed in subjects with depressive symptoms.<ref>{{cita libro
| autore = Stocka A
| autore2 = Sierpinska T
| autore3 = Kuc J
| autore4 = Golebiewska M
| titolo = Relationship between depression and masticatory muscles function in a group of adolescents
| url = https://pubmed.ncbi.nlm.nih.gov/28823222/
| volume =
| opera = Cranio
| anno = 2018
| editore =
| città =
| ISBN =
| DOI = 10.1080/08869634.2017.1364030
| PMID = 28823222
| PMCID =
| oaf = <!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref> Therefore, the aim of the study by Zieliński et al. was to determine the influence of depression quantified through the axis II protocol of RDC/TMD on the resting bioelectrical activity of the masseter and temporalis muscles. The conclusion was that moderate depression determined on the basis of the RDC/TMDs II axis questionnaire is not related to the resting activity of the selected masticatory muscles and that further research should be continued on a larger group of respondents in order to establish the relationship between psychological factors and bioelectrical parameters of masticatory muscles.  


In our opinion it would be somewhat complex and perhaps irrational to try to correlate the activity of the masticatory muscles at rest in subjects suffering from more or less severe depression because the phenomenon of electrical activity in the muscles at rest is called 'spontaneous activity' in neurophysiological jargon and it is a phenomenon with a non-trivial explanation. If this phenomenon is not at least broadly clarified, the myriad of physiopathogenetic interpretations circulating in the dental field can lead to a diagnostic error.


Lo stesso autore,<ref>Grzegorz Zieliński, Aleksandra Byś, Michał Ginszt, Michał Baszczowski, Jacek Szkutnik, Piotr Majcher, Piotr Gawda. Depression and Resting Masticatory Muscle Activity. J Clin Med. 2020 Apr; 9(4): 1097.  Published online 2020 Apr 12. doi: 10.3390/jcm9041097</ref> inoltre, ha conisedato numerosi studi clinici che dimostrano come la depressione ha un effetto sostanziale sul sistema stomatognatico, compresa l'attività dei muscoli masticatori, che può portare a disturbi temporo-mandibolari [5,6]. Inoltre, nei soggetti con sintomi depressivi è stato osservato un aumento dell'attività bioelettrica dei muscoli masseteri<ref>Stocka A., Sierpinska T., Kuc J., Golebiewska M. Relationship between depression and masticatory muscles function in a group of adolescents. Cranio. 2018;36:390–395. doi: 10.1080/08869634.2017.1364030.</ref>. Pertanto, lo scopo dello studio di Zieliński et al. era determinare l'influenza della depressione quantificata attraverso il protocollo dell'asse II di RDC/TMD sull'attività bioelettrica a riposo dei muscoli temporali e masseteri. La conclusione fu che la depressione moderata determinata sulla base del questionario dell'asse RDC/TMDs II non è correlata all'attività a riposo dei muscoli masticatori selezionati e che ulteriori ricerche dovrebbero essere proseguite su un gruppo più ampio di intervistati al fine di stabilire la relazione tra fattori psicologici e parametri bioelettrici dei muscoli masticatori.
For this reason we will present a clinical case reporting Orofacial Pain (OP) and Temporomandibular Disorders (TMDs) which, unfortunately, had encountered diagnostic difficulties in previous medical experiences.


A nostro parere sarebbe alquanto complesso e forse irrazionale cercare di correlare l'attività a risposo dei muscoli masticatori in soggetti affetti da depressione più o meno grave perchè il fenomeno dell'attività elettrica nei muscoli a riposo viene denominata nel gergo neurofisiologico 'Attività spontanea' ed è un fenomeno dalla spiegazione non banale. Se non si chiarisce almeno a grandi linee questo fenomeno, la miriade di interpretazioni fisiopatogenetiche che circolano nel campo odontoiatrico possono portare ad errore diagnostico.  
===5° Clinical case: Spontaneous Electromyographic Activity===
65-year-old female patient reporting mainly Orofacial Pain (OP) in the left emirate of the face and in particular pain radiating from the masseters to the TMJ and left temporalis muscle. After about 2 years from an episode of sudden loss of consciousness at the moment in which his dentist performed a trochlear for periodontology of the lower left immigrant. From that moment on, sudden pains of the unthoracic type began and then spread to the whole left hemiface even when chewing. Colleagues saw the correlation with chewing and analyzed following the RDC protocol and defined the patient as suffering from Temporomandibular Disorders (TMDs)


Per questo motivo presenteremo un caso clinico che riferiva Dolore Orofacciale (OP) e con Disordini Temporomandibolari (TMDs) che, purtroppo, aveva incontrato difficoltà diagnostiche nelle precedenti esperienze mediche.
Once it came to our attention, we followed all the gnathological tests (axiography, ATMs images, and surface EMGs) which did not testify for a TMDs but for an undefined but substantially neurological picture. The reason for this interpretation was precisely the execution of the surface EMG which returned the following results. The electromyographic picture of the masseters was determined following a logical sequence shown in figure 1. As can be observed, the lateral asymmetry of the EMG activity with surface electrodes of the masseters in a relaxed state (fig.1A) with the jaw maintained in rest position it was such as to require a needle EMG of the left masseter. The activity recorded with this technique (fig.1B) showed a discharge with a stable frequency of 20 Hz which presupposed a study of the motor unit. The study of the motor units of the left masseter (fig.1C) automatically selected 26 motor units whose shape, duration, spikes and turns of each unit were analysed. The data are reported in the table (fig.1D) Statistically, the following parameters can be detected: average amplitude of<math>\approxeq348\mu V</math>, a duration of <math>8.7 msec</math>, <math>23%</math> of polyphasic units. This clinical picture represents the typical pathophysiological phenomenon in which the patient reports pain but very often the diagnosis remains "difficulty in muscle relaxation", "atypical orofacial pain" or even better "fibromyalgia" and consequently the drug therapy remains symptomatic. Precisely these conditions should give the doctor the opportunity to deepen his research by carrying out and knowing at least in general terms the constituents of a coaxial needle EMG analysis, before referring the patient to a neurologist specialist.
 
=== 5° Clinical case: Spontaneous Electromyographic Activity ===
Paziente femmina di età 65 anni che riferisce principalmente Dolore Orofacciale (OP)nell'emirato sinistro della faccia ed in particolare un dolore che si irradia dai masseteri alla TMJ ed al muscolo temporale di sinistra. Dopo circa 2 anni da un episodio di perdita improvvisa di coscienza al momento in cui il proprio dentista eseguì una trocleare per paradontologia dell'emigrata inferiore sinistra. Da quel momento iniziarono dolori improvvisi di tipo untorio e poi diffusi a tutta l'emifaccia sinistra anche nella masticazione. I colleghi visto la correlazione con la masticazione ed analizzata seguendo il protocollo RDC definirono la paziente affetta da Temporomandibular Disorders (TMDs)
 
Giunta alla nostra attenzione seguimmo tutti i test gnatologici ( assiografia, Immagini delle ATMs, ed EMG di superficie) che non deponevano per una TMDs ma per un quadro non definito ma sostanzialmente neurologico. Il motivo di questa interpretazione fu proprio l'esecuzione della EMG di superficie che restituì i seguenti risultati. Il quadro elettromiografico dei masseteri è stato determinato seguendo una logica sequenza riportata nella figura 1. Come si può osservare, l’asimmetria di lato dell’attività EMG con elettrodi di superficie  dei masseteri in stato di rilassamento (fig.1A) con la mandibola mantenuta in posizione di riposo era tale da richiedere  una EMG ad ago del massetere sinistro. L’attività registrata con questa tecnica (fig.1B) ha mostrato una scarica con frequenza stabile di  20 Hz il che presuppose uno studio dell’unità motoria. Lo studio delle unità motorie del massetere sinistro (fig.1C) ha automaticamente selezionato 26 unità motorie di cui sono state analizzate la forma, la durata, gli spikes ed i turns di ciascuna unità. I dati sono riportati nella tabella (fig.1D) Statisticamente si possono rilevare i seguenti parametri: ampiezza media di <math>\approxeq348\mu V</math>, una durata di 8.7 mS., il 23% di unità polifasiche. Questo quadro clinico rappresenta il tipico fenomeno fisiopatologico in cui il paziente riferisce dolore ma molto spesso la diagnosi rimane “difficoltà nel rilassamento muscolare”, “ dolore orofacciale atipico” o ancor meglio “fibromialgia” e di conseguenza la terapia farmacologica rimane quella sintomatica. Proprio queste condizioni dovrebbero dare l’opportunità al medico di approfondire le ricerche eseguendo e conoscendo almeno in linee generali le costituenti di una analisi EMG ad ago coassiale, prima di indirizzare la paziente allo specialista neurologo.  




<center>
<center>
<gallery widths="350" heights="200" perrow="2" slideshow""="">
<gallery widths="350" heights="200" perrow="2" slideshow""="">
File:Distonic 2.jpg|'''Figura 1a:''' EMG di superficie che mostra una ampia attività di scarica delle unità motorie (MUs) nel muscolo massetere di sinistra
File:Distonic 2.jpg|'''Figure 1A:''' Surface EMG showing large motor unit (MUs) firing activity in the left masseter muscle
File:Distonic 3.jpg|'''Figura 1b:''' Analisi della frequenza di scarica delle unità motorie masseteri (MUs)
File:Distonic 3.jpg|'''Figure 1B:''' Analysis of the discharge frequency of masseter motor units (MUs)
File:Distonic 1.jpg|'''Figura 1c:''' Analisi della morfologia della Unità motoria masseteri (MUs)
File:Distonic 1.jpg|'''Figure 1C:''' Analysis of the morphology of the masseter motor unit (MUs)
File:Distonic 4.jpg|'''Figura 1d:''' Calcolo dei parametri di scarica delle MUs    
File:Distonic 4.jpg|'''Figure 1D:''' Calculation of the discharge parameters of the MUs
</gallery>
</gallery>
</center>  
</center>  




==== Needle EMG steps ====
The EMG examination of skeletal muscles consists of four steps:


==== Steps EMG ad ago ====
#Insertion activity when the needle electrode is inserted into the muscle
L’esame EMG dei muscoli scheletrici consiste di quattro step:
#Spontaneous activity when the muscle is at rest
#Motor unit potentials evoked by isolated motor discharges during moderate voluntary contraction
#Recruitment or interference pattern during progressive level of contraction


# Attività di inserzione quando inserito l’elettrodo ad ago nel muscolo
=====Insertion activity=====
# Attività spontanea quando il muscolo si trova in condizioni di riposo
# Potenziali di unità motoria evocate da isolate scariche motorie durante una moderata contrazione volontaria
# Reclutamento o pattern interferenziale durante progressivo livello di contrazione


===== Attività di inserzione =====
In one subject, the insertion activity appears as high-frequency positive and negative spikes in a single group and are typically a representation of muscle fiber damage or mechanical stimulation due to needle penetration into the muscle. In our patient this activity occurred with a duration of 80 mS and was referable to a normal picture. Also note the phenomenon of plaque activity. If a needle electrode is held stationary at one point in the muscle, normal muscles at rest show absolutely no electrical activity except in the region of the neuromuscular endplate. These consist of two components: low amplitude (on the order of 10-50 μV) and low duration (1-2 msec) which to the loudspeaker EMG resemble the sound of sea shells on the ear. In our case (fig.1A) the total absence of plaque activity in the right masseter can be explained by the recording performed with surface electrodes which partially reduce the energy of the signal but the activity recorded on the left masseter, again with surface, has a width of<math>\approxeq100\mu V</math> . For the same reasoning, this activity should not be considered as plate activity since, as can be seen in fig. 1B, recording of the left masseter performed with a coaxial electrode, the amplitude is <math>\approxeq 400\mu V</math>. Sometimes plaque potential spikes are indistinguishable in waveform from fibrillation potentials which also show initial negativity when recorded near the plaque. Another curious element is the similarity of the discharge model between the discharges of the neuromuscular spindles and of the plate potentials, so much so that some authors<ref>{{cita libro
In un soggetto l’attività di inserzione appare come spikes ad alta frequnenza positivi e negativi in un unico gruppo e sono in genere la rappresentazione di un danno delle fibre muscolari o di una  stimolazione meccanica dovuta alla penetrazione dell’ago nel muscolo. Nel nostro paziente questa attività si presentò con una durata di 80 mS e fu riferibile ad una quadro di normalità. Da notare, inoltre,  il fenomeno dell’attività di placca. Se un elettrodo ad ago viene mantenuto stazionario in un punto del muscolo, i muscoli normali a riposo non mostrano assolutamente nessuna attività elettrica eccetto che nella regione della placca neuromuscolare. Queste consistono di due componenti: bassa ampiezza ( nell’ordine di 10-50 μV) e minima durata (1-2 msec) che all’altoparlante EMG assomigliano al suono delle conchiglie di mare sull’orecchio. Nel nostro caso (fig.1A) l’assenza totale di attività di placca nel massetere destro  può essere spiegata dalla registrazione eseguita con elettrodi di superficie che abbattono parzialmente l’energia del segnale ma l’attività registrata sul massetere sinistro, sempre con elettrodi di superficie, ha un ampiezza di <math>\approxeq100\mu V</math>. Per lo stesso ragionamento questa attività non deve essere considerata come attività di placca in quanto, come si può osservare in fig. 1B, registrazione del massetere sinistro eseguita con elettrodo coassiale, l’ampiezza è di <math>\approxeq 400\mu V</math>. A volte gli spikes di potenziali di placca sono indistinguibili nella forma d’onda dai potenziali di fibrillazione i quali anche mostrano una iniziale negatività quando registrati vicino alla placca. Un altro elemento curioso è la somiglianza del modello di scarica tra le scariche dei fusi neuromuscolari e dei potenziali di placca, tanto è vero che alcuni autori <ref>Partanen JV, Nousiainen U. : End-plate spikes in the electromyography are fusimotor unit potentials. Neurology 1983; 33:039-1043, </ref> ipotizzarono che questi  potenziali potessero originare dalle fibre intrafusali muscolari. Rimane ancora aperta la discussione ed il significato elettrofisiologico da dare all’attività elettrica osservabile in fig. 1B.                                                                                                                                                                                                    
| autore = Partanen JV
| autore2 = Nousiainen U
| titolo = End-plate spikes in the electromyography are fusimotor unit potentials
| url = https://pubmed.ncbi.nlm.nih.gov/6683798/
| volume =
| opera = Neurology
| anno = 1983
| editore =
| città =
| ISBN =
| DOI = 10.1212/wnl.33.8.1039
| PMID = 6683798
| PMCID =
| oaf = <!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref> hypothesized that these potentials could originate from the intrafusal muscle fibers. The discussion and the electrophysiological meaning to be given to the electrical activity observable in fig. 1B.


===== Attività spontanea: =====
=====Spontaneous activity =====
[[File:EMG a punta+.jpeg|thumb|'''Figur 2:''' Attività spontanea con scariche a punta positive in un muscolo denervato]]
[[File:EMG a punta+.jpeg|thumb|'''Figur 2:''' Attività spontanea con scariche a punta positive in un muscolo denervato]]
Nelle prime 2 settimane dopo la denervazione la sensibilità di una fibra muscolare all’acetilcolina (ACh) aumenta fina a 100 volte. Questo fenomeno conosciuto come “ipersensibilità da denervazione” può spiegare le scariche spontanee delle fibre muscolari denervate in risposta a minimi quanti di ACh. Il fatto che l’infusione di curaro blocca i recettori della placca neuromuscolare ma non abolisce la scarica spontanea<ref>Axelsson J, Thesleff S.: A study of super-sensitivity of denervated mammalian skeletal muscles. J Physiol (Lond) 1957:149;178-193</ref>, che la denervazione del muscolo di rana può determinare una aumentata sensibilità alla ACh ma non generare attività spontanea <ref>Miledi R.: The acetylcholine sensitivity of frog musclefibres after complete or partial denervation. J Physiol (Lond) 1960:151;1-23 </ref>. Questi studi hanno suggerito una ipotesi alternative quella dei cambiamenti lenti dei potenziali di membrana di origine metabolica che possono periodicamente raggiungere un livello critico ed evocare spikes propagati.<ref>Thesleff S: Fibrillation in denervated mammalian skeletal muscle. In Cukp WL e Ochoa J (eds): Abnormal Nerves and Muscle as Impulse Genertors. Oxford University Press. Oxford 1982, pp 678-694</ref> I fenomeni tipici dell’attività spontanee comprendono, comunque, potenziali di fibrillazione, onde a punta positiva, potenziali di fascicolazione, scariche miochimiche e scariche ripetitive complesse. Senza entrare in argomenti troppo specialistici e considerando la registrazioni elettrofisiologiche  del caso clinico è sufficiente trattare le onde a punta positive, la fibrillazione e la  fascicolazione. Per onde punta positive si intende scariche a  denti di sega che scaricano spontaneamente e continuamente. Questo tipo di attività si trova nelle muscoli denervati ma anche in una varietà di condizioni miogeniche. In figura 2 si può osservare un tipico tracciato di attività spontanea di onde a punta positiva che confrontate con il caso clinico in esame (fig.1B) sono chiaramente diverse. Per fibrillazione si intende, invece, potenziali di durata da <math>1-5</math> <math>msec</math> e ampiezza di <math>\approxeq 20-200\mu V</math> con forme d’onda bifasiche o trifasiche e positività iniziale. Potenziali di fibrillazione triggerati da oscillazioni spontanee nel potenziale di membrana tipicamente scaricano a frequenze di <math>1-30 Hz</math> con una media di <math>13Hz</math>. Questo fenomeno rappresenta l’attività spontanea di una o più fibre muscolari ed  è patognomonico di denervazione anche se può apparire in muscoli sani. La presenza di scariche riproducibili in almeno due differenti aree del muscolo usualmente suggerisce un disordine del motoneurone secondario che include patologie delle cellule delle corna anteriori, radicolopatie, plessopatie, mono e polineuropatie assonali oltre che in certe miopatie.                                                                                                                                                                                                                                                                                                                                                                                                           
In the first 2 weeks after denervation, the sensitivity of a muscle fiber to acetylcholine (ACh) increases up to 100-fold. This phenomenon known as “denervation hypersensitivity” may explain the spontaneous firing of denervated muscle fibers in response to minute ACh quanta.<ref>{{cita libro
| autore = Axelsson J
| autore2 = Thesleff S
| titolo = A study of super-sensitivity of denervated mammalian skeletal muscles
| url = https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1357014/pdf/jphysiol01300-0202.pdf
| volume =
| opera = J Physiol
| anno = 1959
| editore =
| città =
| ISBN =
| DOI = 10.1113/jphysiol.1959.sp006233
| PMID = 13673396
| PMCID = PMC1357014
| oaf = <!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref> The fact that the infusion of curare blocks the receptors of the neuromuscular plate but does not abolish the spontaneous discharge, that the denervation of the frog muscle can lead to an increased sensitivity to ACh but not generate spontaneous activity. <ref>{{cita libro
| autore = Miledi R
| titolo = The acetylcholine sensitivity of frog musclefibres after complete or partial denervation
| url = https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363214/pdf/jphysiol01284-0020.pdf
| volume =
| opera = J Physiol
| anno = 1960
| editore =
| città =
| ISBN =
| DOI =
| PMID = 14422356
| PMCID = PMC1363214
| oaf = <!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref>. These studies have suggested an alternative hypothesis that of slow changes in membrane potentials of metabolic origin which can periodically reach a critical level and evoke propagated spikes.<ref>{{cita libro
| autore = Thesleff S
| titolo = Fibrillation in denervated mammalian skeletal muscle
| url =
| volume = Cukp WL e Ochoa J (eds): «Abnormal Nerves and Muscle as Impulse Genertors»
| opera =
| anno = 1982
| editore = Oxford University Press
| città = Oxford
| ISBN =
| DOI =
| PMID =
| PMCID =
| oaf = <!-- qualsiasi valore -->
| LCCN =
| OCLC =
}}</ref>                                                                      
 
These studies have suggested an alternative hypothesis that of slow changes in membrane potentials of metabolic origin which can periodically reach a critical level and evoke propagated spikes. Typical spontaneous activity phenomena, however, include fibrillation potentials, positive spike waves, fasciculation potentials, myochemical discharges, and complex repetitive discharges. Without going into overly specialized topics and considering the electrophysiological recordings of the clinical case, it is sufficient to deal with positive spike waves, fibrillation and fasciculation. Positive peak waves are sawtooth discharges that discharge spontaneously and continuously.                                                                                                                                                                                                                                                                                                                                                                                                        
 
This type of activity is found in denervated muscles but also in a variety of myogenic conditions. In figure 2 it is possible to observe a typical tracing of spontaneous activity of positive peak waves which, compared with the clinical case under examination (fig.1B), are clearly different. By fibrillation, on the other hand, we mean potentials with a duration of <math>1-5</math> <math>msec</math> and amplitude of <math>\approxeq 20-200\mu V</math> with biphasic or triphasic waveforms and initial positivity. Fibrillation potentials triggered by spontaneous oscillations in the membrane potential typically fire at frequencies of <math>1-30 Hz</math> with an average of <math>13Hz</math>. This phenomenon represents the spontaneous activity of one or more muscle fibers and is pathognomonic of denervation although it can appear in healthy muscles. The presence of reproducible discharges in at least two different areas of muscle usually suggests a secondary motor neuron disorder that includes anterior horn cell pathology, radiculopathies, plexopathies, axonal mono- and polyneuropathies as well as certain myopathies.                                                                                                                                                                                                                                                                                                                                                                                                           
[[File:EMG fibrillazione.jpeg|left|thumb|'''Figura 3:''' Tracciato di attività spontanea di fibrillazione in muscolo denervato.]]
[[File:EMG fibrillazione.jpeg|left|thumb|'''Figura 3:''' Tracciato di attività spontanea di fibrillazione in muscolo denervato.]]
In figura 3 possiamo osservare un tipico tracciato di attività spontanea da denervazione e confrontarlo con il tracciato in figura 1C in cui si possono notare delle diversità elettrofisiologiche. L’attività spontanea di fibrillazione ha un ampiezza di <math>\approxeq 200\mu V</math>, la frequenza risulta essere <math>13Hz</math> con andamento random mentre nel caso clinico riportato (fig.1C) l’ampiezza era  di <math>\approxeq 400\mu V</math>e la frequenza più alta (<math>\approxeq 13Hz</math>) ma particolarmente stabile quasi a significare un pacemaker centrale.                                                                                                                                                                                                     
In figure 3 we can observe a typical trace of spontaneous activity from denervation and compare it with the trace in figure 1C in which electrophysiological differences can be noted. The spontaneous fibrillation activity has an amplitude of <math>\approxeq 200\mu V</math> , the frequency <math>13Hz</math> appears to be random while in the reported clinical case (fig.1C) the amplitude was <math>\approxeq 400\mu V</math> and the highest frequency but particularly stable almost signifying a central pacemaker.                                                                                                                                                                                                     


Per evitare confusione terminologica e clinica tra fibrillazione e fascicolazione Danny-Brown e Pennybacker<ref>Danny-Brown D, Pennybacker JB.: Fibrillation and fasciculation in voluntary muscle. Brain 1938; 61: 311-332</ref> proposero il termine di fascicolazione per descrivere la spontanea contrazione (twitch) di unità motorie. Le fascicolazione, perciò, rappresentano la scarica spontanea di un gruppo di fibre muscolari riferibili all’intera o parziale parte dell’unità motoria. Isolate scariche di una unità motoria con complesse bursts di ripetitive scariche causano movimenti vermicolari della pelle chiamati miochimie.<ref>Sindermann F,Conrad B, Jacobi HM, Prochazka VJ.: Unusual properties of repetitive fasciculation Elctroencephalogr Clin Neurophysiol 1973; 35: 173-179</ref>
To avoid terminological and clinical confusion between fibrillation and fasciculation Danny-Brown and Pennybacker<ref>Danny-Brown D, Pennybacker JB.: Fibrillation and fasciculation in voluntary muscle. Brain 1938; 61: 311-332</ref> proposed the term fasciculation to describe the spontaneous twitch of motor units. Fasciculations, therefore, represent the spontaneous discharge of a group of muscle fibers referable to the entire or partial part of the motor unit. Isolated firing of a motor unit with complex bursts of repetitive firing causes vermicular movements of the skin called myokymia.<ref>Sindermann F,Conrad B, Jacobi HM, Prochazka VJ.: Unusual properties of repetitive fasciculation Elctroencephalogr Clin Neurophysiol 1973; 35: 173-179</ref>[[File:Fascicolazioni .jpeg|thumb|'''Figura 4:''' Fascicolazioni del muscolo orbicolaris oculi sinistro.]]
[[File:Fascicolazioni .jpeg|thumb|'''Figura 4:''' Fascicolazioni del muscolo orbicolaris oculi sinistro.]]
Repetitive firings of the same motor unit occur in bursts at regular intervals of <math>0.1-10sec</math> with <math>2-10</math> spikes firing at in each burst <math>30-40 Hz</math>. Fasciculation potentials are typically associated with anterior horn cell pathologies but are also seen in radiculopathies, entrapment neuropathies, and muscle pain fasciculation syndrome. Figure 4 shows a clear example of fasciculations of the orbicularis oculi muscle which, compared with the traces of the clinical case (fig. 1B and C), shows a total morphological diversity and temporal representation. This diversity would strengthen the exclusion of a denervation pathology.                                                                                                                                                                                                     
Scariche ripetitive della stessa unità motoria occorrono in bursts a intervalli regolari di <math>0.1-10sec</math> con <math>2-10</math> spikes che scaricano a <math>30-40 Hz</math> in ciascun burst. I potenziali di fascicolazione sono tipicamente associati con patologie delle cellule delle corna anteriori ma sono anche osservate in radicolopatie, neuropatie da intrappolamento, e la sindrome di fascicolazione dolorosa muscolare. In figura 4 si può osservare un chiaro esempio di fascicolazioni del muscolo orbicolare dell’occhio  che confrontato con i tracciati del caso clinico (fig.1B e C) mostra una totale diversità morfologica e di rappresentazione temporale. Questa diversità rafforzerebbe l’esclusione di una patologia da denervazione.                                                                                                                                                                                                     


===== Potenziali di Unità Motoria =====
=====Motor Unit Potentials=====
Una unità motoria  può essere definita dall’ampiezza, il rise time, dalla durata e dalle fasi come verrà meglio descritto nel capitolo 'Elettromiografia'. L’ampiezza registrata varia ampiamente con la posizione della punta dell’elettrodo relativa alla sorgente di corrente ionica scaricata, per cui un operatore esperto  seleziona un potenziale di unità motoria con una rise time di <math>\approxeq 500\mu sec</math> per essere certi della vicinanza con la sorgente. L’ampiezza nel range della normalità va da centinaia di <math>\mu V</math> ad alcuni <math>m V</math> e la durata  da <math>5-10 msec</math>. Per i muscoli facciali, in particolare, ci si riferisce ai valori riportati da Buchthal <ref>Buchtal F: An introduction to electromyography Scandinavian University Books. Copenhagen 1957</ref> il cui range è <math>4,2-7,5 msec</math> per una età massima di <math>75</math> anni. I potenziali di unità motoria bifasici o trifasici sono presenti anche in muscoli normali con una media di  <math>5-15%</math> di unità con <math>4</math> o più fasi.          
A motor unit can be defined by amplitude, rise time, duration and phases as will be further described in the chapter 'Electromyography'. The recorded amplitude varies widely with the position of the electrode tip relative to the discharged ion current source, so a skilled operator selects a motor unit potential with a rise time of <math>\approxeq 500\mu sec</math> to be certain of proximity to the source. The amplitude in the normal range goes from hundreds to <math>\mu V</math> a few <math>m V</math> and the duration from <math>5-10 msec</math>. For the facial muscles, in particular, we refer to the values reported by Buchthal<ref>Buchtal F: An introduction to electromyography Scandinavian University Books. Copenhagen 1957</ref> whose range is <math>4,2-7,5 msec</math> for a maximum <math>75</math> age of years. Biphasic or triphasic motor unit potentials are also present in normal muscles with an average of motor units <math>5-15%</math>with <math>4</math> or more phases          
         
[[File:EMG polifasico.jpeg|left|thumb|'''Figura 5:''' Tracciato MUAP polifasico]]
[[File:EMG polifasico.jpeg|left|thumb|'''Figura 5:''' Tracciato MUAP polifasico]]
Il numero di unità polifasiche aumentano sia nelle miopatie, neuropatie o nelle patologie del motoneurone. La polifasia indica, dunque, una dispersione  temporale dei potenziali di fibra muscolari dentro una unità motoria. In alcune anormalità chiamate doppiette o triplette una unità motoria spara due o tre volte ad una intervallo di tempo molto corto e sono rappresentative di un disturbo metabolico associato ad ipereccitabilità del pool motoneurale.        
The number of polyphasic units increases both in myopathies, neuropathies or motor neuron pathologies. Polyphasia therefore indicates a temporal dispersion of muscle fiber potentials within a motor unit. In some abnormalities called doublets or triplets a motor unit fires two or three times at a very short time interval and are representative of a metabolic disorder associated with hyperexcitability of the motoneural pool. In figure 5 we can observe a typical tracing of minimal voluntary activity of polyphasic MUAP and a double that represents a motor neuron pathology state. Comparing this recording of pathological motor unit with some of the fig.1C, and in particular the 5,7,13 and 23 with the values of respective amplitude <math>678\mu V;419\mu V3;686\mu V e 530\mu V</math>duration <math>8.2, 4.2,6.2 msec </math> and <math>8.4 msec </math> we can state that the activity recorded on the left masseter, of the clinical case in question, it has no electrophysiological characteristics that can be superimposed on a picture of damage to the II motor neuron.              
In figura 5 possiamo osservare un tipico tracciato a minima attività volontaria di MUAP polifasico ed una doppietta che rappresenta uno stato di patologia del motoneurone. Confrontando questa registrazione di unità motoria patologica con alcune della fig.1C, ed in particolare la 5,7,13 e 23 con i valori di ampiezza rispettivi <math>678\mu V;419\mu V3;686\mu V e 530\mu V</math> durata <math>8.2, 4.2,6.2 msec </math> e e 8.4 <math>8.4 msec </math> possiamo affermare che l’attività registrata sul massetere di sinistra, del caso clinico in questione, non ha nessuna caratteristica elettrofisiologica sovrapponibile ad un quadro di danno del II motoneurone.      


   
   
===== Pattern Interferenziale =====
=====Interferential pattern =====
Aumentando la contrazione aumentano molto le unità motorie che iniziano a scaricare molto rapidamente e ciò precludono l’identificazione di potenziali di unità motorie individuali. Questo fenomeno ha dato il nome di pattern interferenziale. La densità degli spikes e la media ampiezza delle risposte sommate sono determinate da una serie di fattori come: l’output discendente dalla corteccia, il numero di motoneuroni capaci di scaricare, la frequenza di scarica di ciascuna unità motoria, la forma d’onda di potenziali individuali e la probabilità della cancellazione di fase (collisione). Nel nostro caso clinico il pattern interfernziale registrato sui masseteri risultò normale sia in ampiezza che in frequenza.  
Increasing the contraction greatly increases the motor units which start firing very rapidly and this precludes the identification of individual motor unit potentials. This phenomenon has been given the name of interference pattern. The density of the spikes and the average amplitude of the summed responses are determined by a series of factors such as: the descending output from the cortex, the number of motor neurons capable of firing, the firing frequency of each motor unit, the waveform of individual potentials and the probability of phase cancellation (collision). In our clinical case, the interference pattern recorded on the masseters was normal in both amplitude and frequency.  


Dall’analisi dettagliata del tracciato EMG relativo al caso clinico descritto possiamo confermare l’assenza di un danno organico dell’unità motoria e/o delle fibre muscolari per i vari motivi esposti quali: l’assenza di attività spontanea, la normale morfologia dell’unità motoria e del reclutamento interferenziale. Rimane ancora da interpretare la presenza di attività EMG registrata sul massetere sinistro (fig.1) che, riferendosi ai concetti sopradescritti, non può essere denominata “attività spontanea” perché non espressione di denervazione, ne “mancato rilassamento muscolare” in quanto il paziente è incapace di rilassare il muscolo volontariamente o con manovre di stiramento, ne  di “attività EMG a riposo da disturbo psichico in quanto negativi i tests psicometrici. {{q2|Questa attività sembra rispondere ad una pacemaker di origine centrale che scarica a frequenza stabile sui motoneuroni di II ordine ( nucleo motorio trigeminale). Purtroppo è difficile dire se questa attività sia dovuta ad un disturbo funzionale del II motoneurone o del sistema corticale e/o sottocorticale.|}}
From the detailed analysis of the EMG tracing relating to the clinical case described, we can confirm the absence of organic damage to the motor unit and/or muscle fibers for the various reasons explained, such as: the absence of spontaneous activity, the normal morphology of the motor unit and interferential recruitment. The presence of EMG activity recorded on the left masseter still remains to be interpreted (fig.1) which, referring to the concepts described above, cannot be called "spontaneous activity" because it is not an expression of denervation, nor "lack of muscle relaxation" as the patient is unable to relax the muscle voluntarily or with stretching manoeuvres, nor of “EMG activity at rest due to psychic disorder as the psychometric tests are negative.{{q2|This activity seems to respond to a pacemaker of central origin which fires at a stable frequency on second order motor neurons (trigeminal motor nucleus). Unfortunately it is difficult to say whether this activity is due to a functional disorder of the motor neuron II or of the cortical and/or subcortical system.|}}


E’ stato proposto, con il consenso della paziente, uno studio sperimentale in cui si è tentato di  disaccoppiare farmacologicamente l’attività neuronale troncoencefalico da quella corticale. Simultaneamente al  disaccoppiamento farmacologico veniva monitorato l’attività EMG con ago coassiale sul massetere sinistro e contestualmente il blink reflex. Il modello sperimentale, che andremo a spiegare brevemente, è stato realizzato attraverso due elementi essenziali e cioè: la scelta dell’anestetico specifico per lo scopo dello studio (propofol) ed il controllo della attività elettrofisiologica troncoencefalica attraverso il blink reflex  
====Pharmacological experimental study====
An experimental study was proposed, with the consent of the patient, in which an attempt was made to pharmacologically uncouple the brainstem neuronal activity from the cortical one. Simultaneously with the pharmacological uncoupling, the EMG activity with a coaxial needle on the left masseter was monitored and contextually the blink reflex. The experimental model, which we are going to explain briefly, was created through two essential elements, namely: the choice of the specific anesthetic for the purpose of the study (propofol) and the control of the electrophysiological activity of the brainstem through the blink reflex  


'''Propofol:'''  Gli effetti degli anestetici producono perdita di coscienza, di memoria, cambiamenti dell’attività spontanea, attenuazione dei riflessi di protezione, perdita dei riflessi posturali ed anche effetti sfavorevoli come allucinazioni, euforia ed amnesie. Inoltre essi possono influenzare il livello o l’omeostasi dei neurotrasmettitori nel cervello come la dopamina, noraepinefrina e l’acetilcolina (ACh).<ref>Angel A. : Central neuronal pathways and the process of anaesthesia. British Journal of Anaesthesia 1993; 71:148-163</ref> La Ach fu il primo neurotrasmettitore ad essere descritto ed i neuroni colinergici sono distribuiti ampiamente nel cervello. I meccanismi colinergici sono conosciuti essere importanti nello striato dove un bilanciamento tra dopamina ed il rilascio di ACh assicurano una normale output motorio,<ref>Iversen SD.: Behavioural evaluation of cholinergic drug. Life Sciences 1997; 60: 1145-1152</ref> nell’ippocampo e nella corteccia frontale dove Ach gioca un ruolo importante per la regolazione della coscienza, memoria ecc.
=====Propofol=====
The effects of anesthetics produce loss of consciousness, memory, changes in spontaneous activity, attenuation of protective reflexes, loss of postural reflexes and also adverse effects such as hallucinations, euphoria and amnesia. Furthermore they may affect the level or homeostasis of neurotransmitters in the brain such as dopamine, noraepinephrine and acetylcholine (ACh).<ref>Angel A. : [https://www.bjanaesthesia.org/article/S0007-0912(17)45772-2/pdf Central neuronal pathways and the process of anaesthesia.] British Journal of Anaesthesia 1993; 71:148-163</ref> Ach was the first neurotransmitter to be described and cholinergic neurons are widely distributed in the brain. Cholinergic mechanisms are known to be important in the striatum where a balance between dopamine and ACh release ensures normal motor output,<ref>Iversen SD.: Behavioural evaluation of cholinergic drug. Life Sciences 1997; 60: 1145-1152</ref> hippocampus and frontal cortex where ACh plays an important role in the regulation of consciousness, memory etc.


Il Propofol si pensa potenziare l’effetto inibitorio dei recettori GABAA ed avere un’azione diversa dai barbiturici o benzodiazepine. Un elegante studio<ref>Kikuchi T, Wang Y, Sato K, Okumura F.: In vivo effects of propofol on aceylcholine release from the fronatl cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats</ref> realizzato attraverso microdialisi intracerebrale nel topo ha permesso di dimostrare che il propofol, con dosi di 50 mg/kg, diminuisce il rilascio di ACh dalla corteccia frontale del 85%, del 72 % dall’ippocampo e del 19% dallo striato.  
Propofol is thought to potentiate the inhibitory effect of GABAA receptors and to have a different action from barbiturates or benzodiazepines. An elegant study<ref>Kikuchi T, Wang Y, Sato K, Okumura F.: [https://www.bjanaesthesia.org/article/S0007-0912(17)40431-4/pdf In vivo effects of propofol on aceylcholine release from the fronatl cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats]Br J Anaesth. 1998 May;80(5):644-8. doi: 10.1093/bja/80.5.644.</ref> carried out through intracerebral microdialysis in mice demonstrated that propofol, with doses of 50 mg/kg, decreased the release of ACh from the frontal cortex by 85%, by 72% by the hippocampus and by 19% by the striatum.


'''Blink reflex:'''  Il blink è un riflesso che si evoca percuotendo la regione sopraccigliare su un lato della fronte. Elettrofisiologicamente è possibile evocarlo applicando uno stimolo elettrico sull’arcata sopracigliare in corrispondenza del forame sovraorbitario. Le risposte vengono registrate attraverso due elettrodi di superficie posizionati sul muscolo orbicolare dell’occhio  di ciascun lato e i potenziali motori possono essere rappresentati principalmente da due eventi e cioè dalla risposta R1 ipsilaterale alla stimolazione e la R2 bilaterale. Queste risposte rappresentano una circuiteria monosinaptica e polisinaptica per la R1 e R2 ripettivamente. La risposta R1 è stata considerata seguire un percorso trigeminale nel ponte mentre la R2 attraverso un percorso adiacente la formazione reticolare  raggiunge i nuclei facciali.<ref>Ongerboer de Visser BW, Kuypers HG (1978): Late blink reflex changes in lateral medullary lesions. An electrophysiological and neuro-anatomical study of Wallenberg's syndrome. ''Brain'' '''101''': 285-294. </ref><ref>Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. ''Advances in neurology''. New York: Raven Press. p 757-772.</ref><ref>Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. ''Advances in neurology''. New York: Raven Press. p 757-772.</ref>  
=====Blink reflex=====
The blink is a reflex that is evoked by hitting the eyebrow region on one side of the forehead. Electrophysiologically it is possible to evoke it by applying an electrical stimulus on the eyebrow arch in correspondence with the supraorbital foramen. The responses are recorded through two surface electrodes positioned on the orbicularis oculi muscle on each side and the motor potentials can be mainly represented by two events, namely the ipsilateral R1 response to stimulation and the bilateral R2. These responses represent a monosynaptic and polysynaptic circuitry for R1 and R2 respectively. The R1 response was considered to follow a trigeminal pathway in the pons while the R2 via a pathway adjacent the reticular formation reaches the facial nuclei.<ref>Ongerboer de Visser BW, Kuypers HG (1978): Late blink reflex changes in lateral medullary lesions. An electrophysiological and neuro-anatomical study of Wallenberg's syndrome. ''Brain'' '''101''': 285-294. </ref><ref>Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. ''Advances in neurology''. New York: Raven Press. p 757-772.</ref><ref>Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. ''Advances in neurology''. New York: Raven Press. p 757-772.</ref>


Il principale circuito neuronale del blink reflex è localizzato nel tronco encefalico ma recenti lavori, impiegando la Risonanza Magnetica Funzionale (RMNf), hanno dimostrato che due principali aree nel lobo posteriore dell’emisfero cerebellare, principalmente sul lato ipsilaterale alla stimolazione, sono attivate durante i riflessi di ammicamento nell’uomo.<ref>Dimitrova A, Weber J, Maschke M, Elles HG, Kolb FP, Forsting M, Diener HC, Timmann D. Eyeblink-related areas in human cerebellum as shown by fMRI. Hum Brain Mapp. 2002 Oct;17(2):100-15.</ref>
The main neural circuitry of the blink reflex is located in the brainstem but recent work, using functional magnetic resonance imaging (fMRI), has demonstrated that two main areas in the posterior lobe of the cerebellar hemisphere, mainly on the side ipsilateral to the stimulation, are activated during the blink reflexes in humans.<ref>Dimitrova A, Weber J, Maschke M, Elles HG, Kolb FP, Forsting M, Diener HC, Timmann D. [https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/12353244/ Eyeblink-related areas in human cerebellum as shown by fMRI.] Hum Brain Mapp. 2002 Oct;17(2):100-15.</ref>


==== Procedura sperimentale ====
====Experimental procedure====
L’esperimento consistette nel monitorare simultaneamente la presenza del blink relex ( R1 e R2) e l’attività EMG del massetere sinistro con elettrodo ad ago al momento dell’infusione di Propofol a dosi di <math>2 mg/kg </math> che determinò una lieve dissociazione-vigile e con occhi aperti. In questo modo si può affermare, con buona approssimazione, che il farmaco lasciò libere le funzioni mesencefalico-bulbari.  
The experiment consisted in simultaneously monitoring the presence of the blink relex (R1 and R2) and the EMG activity of the left masseter with a needle electrode at the time of Propofol infusion at doses of <math>2 mg/kg </math> which determined a slight dissociation - alert and with eyes open . In this way it can be stated, with a good approximation, that the drug released the mesencephalic-bulbar functions.  


Le risposte EMG (fig. 6) furono le seguenti: al momento dell’introduzione del farmaco si assiste ad una breve perdita cosciente del controllo corticale, che gli anestesisti conoscono clinicamente come ipertono transitorio e che elettrofisiologicamente ha determina un aumento del tono muscolare. In figura 6 (fase 1: prime due traccia superiori) si può osservare l’ aumento della frequenza di scarica delle unità motorie che vanno da <math>\approxeq 23Hz </math>, prima dell’esperimento (fig.1B), a  <math>\approxeq 75Hz </math> della fase 1.( Fig. 6, traccia 1 e 2 superiore)  
The EMG responses (fig. 6) were as follows: upon introduction of the drug there was a brief conscious loss of cortical control, which anesthetists know clinically as transient hypertonicity and which electrophysiologically causes an increase in muscle tone. In figure 6 (phase 1: first two upper traces) we can observe the increase in the discharge frequency of the motor units ranging from <math>\approxeq 23Hz </math>, before the experiment (fig.1B), to <math>\approxeq 75Hz </math>  of phase 1.( Fig. 6, trace 1 and 2 above)


Dopo  <math>\approxeq 5 sec </math> il farmaco sembra essersi distribuito alle aree corticali-sottocorticali e questo effetto si manifesta elettrofisiologicamente con un rallentamento della frequenza di scarica EMG (fig. 6 traccia 3 e 4 partendo dall'alto). Dopo altri <math>\approxeq 6 sec </math>  la saturazione delle aree corticali e, presumibilmente, sottocorticali è completa e si assiste ad una assenza totale dell’attività EMG sul massetere sinistro.(fig. 6 traccia 5,6 e 7 partendo dall'alto) Infine il farmaco viene metabolizzato dopo  <math>\approxeq 6 sec </math> dal silenzio elettrico e contestualmente riappare la costante attività tonica EMG a <math>\approxeq 23Hz </math> (fig.6 traccia 8-14).  
After <math>\approxeq 5 sec </math>  the drug seems to have distributed to the cortical-subcortical areas and this effect is manifested electrophysiologically with a slowing down of the EMG discharge frequency (fig. 6 traces 3 and 4 starting from the top). After others <math>\approxeq 6 sec </math>  the saturation of the cortical and, presumably, subcortical areas is complete and there is a total absence of EMG activity on the left masseter. (fig. 6 traces 5,6 and 7 starting from the top) Finally the drug is metabolised after<math>\approxeq 6 sec </math> from the electric silence and contextually the constant EMG tonic activity reappears at <math>\approxeq 23Hz </math> (fig.6 trace 8-14).{{q2|The most interesting data was in phase 3 in which there is the total absence of MUAP while the blink reflex was still evokeable with its R1 and R2 components. This would explain the cortical and/or subcortical pacemaker but would not involve brainstem structures.|}}


Il dato più interessante è stato nella fase 3 in cui vi è l’assenza totale di MUAP mentre il blink reflex era ancora evocabile con le sue componenti R1 e R2. Questo spiegherebbe il pacemaker corticale e/o sottocorticale ma non coinvolgerebbe le strutture troncoencefaliche.


[[File:EMG Propofol.jpeg|center|thumb|600x600px|'''Figure 6:''' EMG result of the experimental procedures. For better understanding follow text]]


[[File:EMG Propofol.jpeg|center|thumb|600x600px|'''Figura 6:''' Risultato EMG delle procedure sperimentali. Per una migliore comprensione segui testo]]
===Conclusions===


=== Conclusione ===
====Experimental conclusion====
The EMG activity present in the examined subject cannot be defined as "Spontaneous activity" because it does not show characteristics of organic damage to the muscle fibers and/or the second motor neuron. If it were muscle fiber damage, the EMG activity would have remained even after <math>2 mg/kg </math> administration of propofol. Indeed, it was observed that doses of <math>2 mg/kg </math> propofol failed to reverse the fasciculations induced by administration of 1 mg/kg of succinylcholine.<ref>Kararmaz A. Kaya S, TurhanogluS, Ozyilmaz A.: Effects of high-dose propofol on succinylcholine-induced fasciculations and myalgia. Acta Anaesthesiol Scand 2003; 47:180-184</ref> The EMG activity present in the subject cannot be described as "Incapacity to relax" because the term is too generic to refer to conditions of psychic disturbances and dystonic disorders. In oromandibular dystonias, in fact, there are phases of EMG silence when the patient is asked to deviate the jaw to one side in an attempt to stretch the muscle involved. This effect is determined by an additional input from the muscle proprioceptive fibers.


==== Conclusione sperimentale ====
The disappearance of the EMG activity at doses of <math>2 mg/kg </math> propofol, a dose capable of interfering with the cortical, subcortical and striatal systems while maintaining the brainstem and pontobulbar functions intact, demonstrates that the pacemaker is at a higher level of the brainstem.
L’attività EMG presente nel soggetto esaminato non può essere definita  “''Attività spontanea''”  perché non presenta caratteristiche di danno organico delle fibre muscolari e/o del II motoneurone.  Se si trattasse di danno delle fibre muscolari l’attività EMG sarebbe rimasta anche dopo somministrazione di <math>2 mg/kg </math> di propofol. E’ stato osservato, infatti, che dosi di propofol di <math>2 mg/kg </math> fallirono nel annullare le fascicolazioni indotte da somministrazione di 1mg/kg di succinilcolina.<ref>Kararmaz A. Kaya S, TurhanogluS, Ozyilmaz A.: Effects of high-dose propofol on succinylcholine-induced fasciculations and myalgia. Acta Anaesthesiol Scand 2003; 47:180-184</ref> L’attività EMG presente nel soggetto non può essere descritta come “Incacacità di rilassamento” perché termine troppo generico sia riferito a condizioni di turbe psichiche che a disturbi distonici. Nelle distonie oromandibolari si assiste,infatti, a fasi di silenzio EMG quando si chiede al paziente di deviare la mandibola su un lato nel tentativo di stirare il muscolo coinvolto. Questo effetto è determinato da un aggiuntivo input delle fibre propriocettive muscolari.


La scomparsa dell’attività EMG a dosi di <math>2 mg/kg </math> di propofol, dose capace di interferire con i sistemi corticali, sottocorticali e striatali mantenendo integre le funzioni troncoencefaliche e ponto-bulbari, dimostra che il pacemaker è ad un livello superiore del tronco encefalico.
The recorded EMG activity can finally be defined as "involuntary EMG activity" and responds to a pacemaker of central origin. This continuous EMG activity would determine, in the long run, damage to the myofibrils and myoglobin, an algogenic substance, would be the terminal cause of the pain reported by the patient.


L’attività EMG registrata si può finalmente  definire “Attività EMG involontaria" e risponde ad un pacemaker di origine centrale. Questa continua attività EMG  determinerebbe, a lungo andare, un danno delle miofibrille e la mioglobina, sostanza algogena, sarebbe la causa terminale del dolore riferito dalla paziente.  
Therefore, the patient was more likely to be affected by "Focal oromandibular dystonia" than by "Tempormandibular Disorders" accompanied by phenomena of bruxism even during the day. Pharmacological evidence, in fact, suggests that the central dopaminergic system may be involved in the pathogenesis of the craniocervical dystonia and bruxism.<ref>Watt MW, Tan EK, Jankovic J.: Bruxism and Cranial cervical dystonia: Is there a relationship? Behavioural Sciences. 1999; 17: 196-2011)   </ref> Lobbezo, in fact, demonstrated by PET imaging an abnormal lateral distribution in striatal D2-binding receptors in bruxism and craniocervical dystonias.<ref>Lobbezzo F, Soucy JP, Montplaisir JY, Lavigne GJ.: Striatal D2 receptor binding in sleep bruxism: a controlled study with iodine 123 –iodobenzamide and single photon emission computer tomography. J Dent. Res. 1996 : 75 ; 1804-1810</ref> The fact that peripheral trauma may cause dystonia suggests that the sensory system may be important for the pathogenesis of focal dystonia and, in any case, it can interact only if the patient is genetically predisposed to develop a post-traumatic dystonia.<ref>Chuldler EH, Dong WK.: The role of basal ganglia in nociception and pain Pain 1995; 60: 3-38</ref> Using PET, thermal pain stimulation of the hand and the intradermal injection of capsaicin can determine an increase in the blood flow in the contralateral putamen and globus pallidus when compared with painless thermal stimuli.<ref>Jones AK, Brown WD, Friston KJ, Qi LY,Frackowiak RS.: Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond B Biol Sci 1991; 244: 39-44</ref><ref>Iadarola MJ, Berman KF, Byas-Smith M, Gracely RH, Max M, Seffiro T. et all.: Positron emission tomography (PET) studies of pain and allodynia in normal and patients with chronic neuropathic pain. Soc Neurosci Abstr 1993; 19: 1074</ref> Furthermore, the expression of the genes for prodynorphin, c-Fos and c-Jun is altered at the spinal and midbrain levels after painful stimuli.<ref>Bullitt E.: Introduction of c-Foslike protein whitin the lumbar spinal cord and thalamus of the rat following peripheral stimulation. Brain Res 1989; 493: 391-7 </ref> In dystonics, using PET, peak blood flow in response to hand vibration was significantly reduced in both primary sensory and supplementary motor cortices when compared with normal subjects.<ref>Tempel LW, Perlmutter JS.: Abnormal cortical responses in patients with writer’s cramp Neurology 1993; 43: 2252-7</ref> Dystonic manifestations in the patients were easily elicited by the "tonic vibration reflex" but were markedly attenuated by lidocaine blockade of the muscle spindles.<ref>Kaji R, Rothwell JC, Katayama M, Ikeda T, Kubori T, Kohara N, Mezaki T, Shibasaki H, Kimura J.: Tonic vibration reflex and muscle afferent block in writer's cramp. Ann Neurol. 1995 Aug;38(2):155-62</ref>


La paziente, dunque, poteva essere affetta con più ampia probabilità da “Distonia focale oromandibolare" più che da "Disordini Tempormandibolari" accompagnata da fenomeni di bruxismo anche diurno. Evidenze farmacologiche, infatti, suggeriscono che il sistema dopaminergico centrale può essere implicato nella patogenesi della distonia cranio cervicale e nel bruxismo.<ref>Watt MW, Tan EK, Jankovic J.: Bruxism and Cranial cervical dystonia: Is there a relationship? Behavioural Sciences. 1999; 17: 196-2011)   </ref> Lobbezo, infatti, attraverso la PET  ha dimostrato una anormale distribuzione di lato nei recettori D2 striatali leganti nel bruxismo e nelle distonie cranio cervicali.<ref>Lobbezzo F, Soucy JP, Montplaisir JY, Lavigne GJ.: Striatal D2 receptor binding in sleep bruxism: a controlled study with iodine 123 –iodobenzamide and single photon emission computer tomography. J Dent. Res. 1996 : 75 ; 1804-1810</ref> Il fatto che il trauma periferico possa causare distonia suggerisce che il sistema sensoriale possa essere importante per la patogenesi della distonia focale e, comunque, esso può interagire solo se il paziente è geneticamente predisposto a sviluppare una distonia post-traumatica.<ref>Chuldler EH, Dong WK.: The role of basal ganglia in nociception and pain Pain 1995; 60: 3-38</ref> Usando la PET la stimolazione dolorosa termica della mano e l’iniezione intradermica di capsicina possono determina un aumento del flusso ematico nel putamen controlaterale e del globus pallido quando comparati con stimoli non dolorosi termici.<ref>Jones AK, Brown WD, Friston KJ, Qi LY,Frackowiak RS.: Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond B Biol Sci 1991; 244: 39-44</ref><ref>Iadarola MJ, Berman KF, Byas-Smith M, Gracely RH, Max M, Seffiro T. et all.: Positron emission tomography (PET) studies of pain and allodynia in normal and patients with chronic neuropathic pain. Soc Neurosci Abstr 1993; 19: 1074</ref> Inoltre l’espressione dei geni per la prodinorfina, c-Fos e c-Jun è alterata a livello spinale e mesencefalico dopo stimoli dolorosi.<ref>Bullitt E.: Introduction of c-Foslike protein whitin the lumbar spinal cord and thalamus of the rat following peripheral stimulation. Brain Res 1989; 493: 391-7 </ref> Nei distonici, impiegando i PET, il picco di flusso sanguigno in risposta alla vibrazione della mano fu significativamente ridotto sia nella corteccia  sensoriale primaria che nella motoria supplementare quando comparata con i soggetti normali.<ref>Tempel LW, Perlmutter JS.: Abnormal cortical responses in patients with writer’s cramp Neurology 1993; 43: 2252-7</ref> Manifestazioni distoniche nei pazienti furono facilmente provocati dal “riflesso tonico di vibrazione” ma furono marcatamente attenuati dal blocco con lidocaina dei fusi neuromuscolari.<ref>Kaji R, Rothwell JC, Katayama M, Ikeda T, Kubori T, Kohara N, Mezaki T, Shibasaki H, Kimura J.: Tonic vibration reflex and muscle afferent block in writer's cramp. Ann Neurol. 1995 Aug;38(2):155-62</ref>
These authors suggested three mechanisms that may explain the increased sensitivity to vibration: the loss of the normal inhibition of the Ia afferents, a "central" alteration, and an alteration of the excitability of the neuromuscular spindles resulting from an overactivity of motor neurons. Loss of normal inhibition was also found in other experiments; in dystonics, in fact, there is a rapid curve of the recovery cycle of the blink reflex and of the H wave.<ref>Tolosa E, Montserrat L, Bayes A.: Blink reflex studies in focal dystonias: enhanced excitability of brainstem interneurons in cranial dystonia and spasmodic torticollis. Mov Disord. 1988;3(1):61-9</ref>


Questi autori suggerirono tre meccanismi che possono spiegare l’aumentata sensibilità alla vibrazione: la perdita della normale inibizione delle afferenze Ia, un’alterazione “centrale” ed un’alterazione dell’eccitabilità dei fusi neuromuscolari risultante da una iperattività dei motoneuroni <math>\gamma</math>. La perdita della normale inibizione fu anche trovata in altri esperimenti; nei distonici, infatti, è presente una rapida curva del ciclo di recupero del blink reflex e dell’onda H.<ref>Tolosa E, Montserrat L, Bayes A.: Blink reflex studies in focal dystonias: enhanced excitability of brainstem interneurons in cranial dystonia and spasmodic torticollis. Mov Disord. 1988;3(1):61-9</ref>
====Pharmacological treatment====
The patient responded positively to the administration of "SIRDALUD" at doses of 4 mg three times a day more than to the administration of diazepam. Tizanidine (Sirdalud) is in fact a molecule that acts centrally as a myotonolitic agent and is pharmacologically and chemically different from diazepam and baclofen. This is a potent inhibitor of <math>\alpha</math> e <math>\gamma</math> motoneurons for stiffness experimentally induced in mice and polysynaptic activity in cats. In the decorticated or decerebrated cat, tizanidine preferentially inhibits the tonic component of the reflex activity. The actions of tizanidine result from its agonist activity at noradrenergic subunit receptors and may also involve inhibition of the release of excitatory amino acids from spinal interneurons (EAAs).<ref>Coward DM: The drug treatment of spasticity. Sandoz 1997</ref> The action on muscle tone, the lower sedative effect compared to diazepam and baclofen and the resulting lower muscle weakness are the characteristics that led to the choice of this drug over the others (EAAs)


==== Trattamento farmacologico ====
====Clinical conclusions====
La paziente rispose positivamente alla somministrazione di “SIRDALUD“ a dosi di 4 mg tre volte al dì più che alla somministrazione di diazepam.                                                                      La tizanidina ( Sirdalud) è infatti una molecola che agisce centralmente come agente miotonolitico ed è farmacologicamente e chimicamente diverso dal diazepam e baclofen. Questo è un potente inibitore della  e   rigidità indotta sperimentalmente sul topo e dell’attività polisinaptica nel gatto. Nel gatto decorticato o decerebrato la tizanidina inibisce preferenzialmente la componente tonica dell’attività riflessa. Le azioni della tizanidina derivano dalla propria attività agonista sui recettori noradrenergici delle sub-unità <math>\alpha_2</math> e possono coinvolgere anche l’inibizione del rilascio degli aminoacidi eccitatori dagli interneuroni spinali (EAA).<ref>Coward DM: The drug treatment of spasticity. Sandoz 1997</ref>  L’azione sul tono muscolare, il minore effetto sedativo rispetto al diazepam ed al baclofen e  la minore debolezza muscolare che ne deriva, sono le caratteristiche che hanno indotto la scelta di questo farmaco rispetto agli altri (EAA)


==== Conclusioni Cliniche ====
To reach a clear and meaningful clinical conclusion we need to ask ourselves the following question:


Per giungere ad una conclusione clinica chiara e significativa dobbiamo porci la seguente domanda:
Are the Temporomandibular Disorders causing a functional alteration of the trigeminal Central Nervous system or could this clinical manifestation represent a variant of a benign acute cranial polyneuritis, or a more complex clinical state?


Sono i Disordini Temporomandibolari a causare una alterazione funzionale del sistema Nervoso Centrale trigeminale oppure questa manifestazione clinica potrebbe rappresentare variante di una polineurite cranica acuta benigna, oppure uno stato clinico più complesso?
An adequate answer to this question was given by a study by Adour KK<ref>Adour KK. Acute temporomandibular joint pain-dysfunction syndrome: neuro-otologic and electromyographic study. Am J Otolaryngol. 1981 May;2(2):114-22. doi: 10.1016/s0196-0709(81)80028-2.PMID: 7270801</ref> through a prospective study using neuro-otological examination and electromyography. Seven consecutive patients with cardinal symptoms of temporomandibular joint pain syndrome (pain, tenderness, clicking, and limitation of jaw movement) were evaluated within one week of the onset of their acute symptoms. Three others with chronic symptoms were tested for comparison with acute cases. All seven patients with the acute condition had asymptomatic hypoesthesia of all three divisions of the trigeminal nerve and decreased action potential of the volitional muscles in the masseter and temporal muscles. At the end of three weeks the hypesthesia resolved in all seven patients and the muscle action potential returned to normal in six of the seven. EMG testing of the single patient with persistent reduced muscle action potentials and three patients with chronic symptoms showed fibrillation, reduced polyphasic regeneration potentials, and spontaneous fasciculations with clinical atrophy and spasm of the affected masseter and temporal muscles. Other acute cranial nerve findings included unilateral glossopharyngeal and second cervical nerve hypoesthesia, motor paralysis of the superior laryngeal branch of the vagus nerve, and increased facial nerve latency. These findings suggest a neuromuscular, rather than a psychophysiological, organic cause of temporomandibular joint pain syndrome.


Una adeguata risposta a questo quesito è stata data da uno studio di Adour KK <ref>Adour KK. Acute temporomandibular joint pain-dysfunction syndrome: neuro-otologic and electromyographic study. Am J Otolaryngol. 1981 May;2(2):114-22. doi: 10.1016/s0196-0709(81)80028-2.PMID: 7270801</ref>attraverso uno studio prospettico utilizzando l'esame neuro-otologico e l'elettromiografia. Sette pazienti consecutivi con sintomi cardinali della sindrome da disfunzione dolorosa dell'articolazione temporo-mandibolare (dolore, dolorabilità, clic e limitazione del movimento della mandibola) sono stati esaminati entro una settimana dall'insorgenza dei loro sintomi acuti. Altri tre con sintomi cronici sono stati testati per il confronto con i casi acuti. Tutti e sette i pazienti con la condizione acuta presentavano ipoestesia asintomatica di tutte e tre le divisioni del nervo trigemino e una riduzione del potenziale d'azione dei muscoli volitivi nei muscoli masseteri e temporali. Alla fine di tre settimane l'ipestesia si è risolta in tutti e sette i pazienti e il potenziale d'azione muscolare è tornato alla normalità in sei dei sette. I test elettromiografici del singolo paziente con potenziali d'azione muscolari ridotti persistenti e tre pazienti con sintomi cronici hanno mostrato fibrillazione, ridotti potenziali di rigenerazione polifasica e fascicolazioni spontanee con atrofia clinica e spasmo dei muscoli masseteri e temporali interessati. Altri risultati acuti del nervo cranico includevano ipoestesia unilaterale del glossofaringeo e del secondo nervo cervicale, paralisi motoria del ramo laringeo superiore del nervo vago e aumento della latenza del nervo facciale. Questi risultati suggeriscono una causa organica neuromuscolare, piuttosto che psicofisiologica, della sindrome da disfunzione dolorosa dell'articolazione temporo-mandibolare.
Contrary to this assertion that sees an organic neuromotor disturbance at the basis of a clinical situation of TMDs, there is the opinion that the influence of the unilateral posterior crossbite on the variations of spontaneous muscle activity in the mandibular rest position and in maximum voluntary contraction is significant and confirmed by Woźniak K et al.<ref name=":0">Woźniak K, Szyszka-Sommerfeld L, Lichota D. [https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25883948/ The electrical activity of the temporal and masseter muscles in patients with TMD and unilateral posterior crossbite]. Biomed Res Int. 2015;2015:259372. doi: 10.1155/2015/259372. Epub 2015 Mar 26.PMID: 25883948 </ref>  


Contrariamente a questa asserzione che vede un disturbo organico neuromotorio alla base di una situazione clinica di TMDs c'è la opinione che l'influenza del crossbite posteriore unilaterale sulle variazioni dell'attività muscolare spontanea nella posizione di riposo mandibolare e nella massima contrazione volontaria sia significativa e confermata da Woźniak K et al.<ref name=":0">Woźniak K, Szyszka-Sommerfeld L, Lichota D. The electrical activity of the temporal and masseter muscles in patients with TMD and unilateral posterior crossbite. Biomed Res Int. 2015;2015:259372. doi: 10.1155/2015/259372. Epub 2015 Mar 26.PMID: 25883948 </ref> 
Having already clarified, albeit not in depth, the terminological, clinical and scientific difficulty in understanding phenomena that represent an alteration of the trigeminal Central Nervous System in EMG activity at rest, we can only suggest more attention in planning experiments of this type. For example Woźniak K et al.<ref name=":0" /> reaches these conclusions by analyzing the asymmetry between sides of the EMG activity at rest and at maximum will to contract (MVC) and the algorithm used is the following:<math>As=\frac{\textstyle \sum_{i=1}^N |R_i-L_i|\displaystyle}{\textstyle \sum_{i=1}^N |R_i+L_i|\displaystyle}
 
\cdot100</math>
Avendo già chiarito anche se in modo non approfondito la difficoltà terminologica, clinica e scientifica nella comprensione di fenomeni che rappresentano una alterazione del Sistema Nervoso Centrale trigeminale nell'attività EMG a riposo possiamo solo suggerire più attenzione nel progettare esperimenti di questo tipo. Per esempio Woźniak K et al.<ref name=":0" /> giunge a tali conclusioni analizzando la asimmetria tra lati dell'attività EMG a riposo ed a massima volonta di contrazione (MVC) e l'algoritmo impiegato è il seguente:  


<math>As=\frac{\textstyle \sum_{i=1}^N |R_i-L_i|\displaystyle}{\textstyle \sum_{i=1}^N |R_i+L_i|\displaystyle}
\cdot100</math>


ma non si è tenuto conto se queste asimmetrie, principalmente evidenti al numeratore siano realmente correlate ad una simmetria organica delle radici motorie trigeminali. Queste conclusioni perciò, sarebbero potute divenire esponenzialmente significative se correlate ai dati in uscita dall'esecuzione dei Potenziali Evocati motori trigeminali bilaterali <sub>b</sub>Root-MEPs messi appunto dal nostro gruppo.  
but we did not take into account whether these asymmetries, mainly evident in the numerator, are really related to an organic symmetry of the trigeminal motor roots. Therefore, these conclusions could have become exponentially significant if correlated to the output data from the execution of the bilateral trigeminal motor Evoked Potentials <sub>b</sub>Root-MEPs performed by our group.  


Questo avrebbe avuto un esponenziale significato clinico perchè avrebbe confermato una correlazione tra la asimmetria funzionale ( e non organica) tra il crossbite e le attività elettriche neuromotorie. {{Bib}}
This would have had an exponential clinical significance because it would have confirmed a correlation between the functional (and non-organic) asymmetry between the crossbite and the neuromotor electrical activities.{{Bib}}

Latest revision as of 17:08, 19 October 2024

5° Clinical case: Spontaneous Electromyographic Activity

 

Masticationpedia
Article by  Gianni Frisardi

 

Abstract:This chapter delves into the complex and often debated topic of electromyography (EMG) in resting muscles, especially in patients with Orofacial Pain (OP) and Temporomandibular Disorders (TMDs). The central question revolves around whether a muscle at rest is truly silent or exhibits motor unit activity. Several studies, including those by Zieliński et al. and Fernández-de-Las-Peñas et al., have shown that changes in electromyographic patterns of masticatory muscles may be linked to myofascial trigger points (MTrPs) and TMDs. The presence of altered EMG activity in muscles at rest could be indicative of associated pain or dysfunction in masticatory and neck-shoulder muscles.

The article explores the relationship between depression and resting masticatory muscle activity, as depression is known to affect the stomatognathic system. However, a key question remains: how relevant is EMG activity in resting muscles to a patient’s psychological state? This article presents the 5th clinical case study of a 65-year-old female patient suffering from Orofacial Pain and TMD, where traditional diagnostic approaches failed to uncover the true underlying condition. Through advanced EMG techniques, including surface and needle EMG, spontaneous motor unit activity was observed, revealing the presence of "involuntary EMG activity" that likely originated from a central pacemaker, rather than muscle fiber or motor neuron damage.

An experimental pharmacological study using Propofol was conducted to decouple brainstem activity from cortical control. The study's results demonstrated that the patient’s EMG activity ceased upon Propofol administration, providing evidence of a central origin of the pacemaker activity, independent of brainstem functions. This led to a final diagnosis of Focal Oromandibular Dystonia rather than TMD.

The article concludes by emphasizing the importance of considering neurological factors, such as involuntary EMG activity driven by a central pacemaker, in diagnosing and treating OP and TMD. It advocates for a more comprehensive neuro-electrophysiological approach, integrating techniques like bilateral trigeminal motor evoked potentials (bRoot-MEPs) to better understand the functional and organic aspects of TMDs. This case underscores the potential for misdiagnosis when relying solely on traditional gnathological and EMG methods without deeper neurophysiological exploration.

Introduction

In this chapter we will address another subject, much discussed but also much followed and proposed as a diagnostic test in particular in patients with Orofacial Pain (OP) and Temporomandibular Disorders (TMDs), that of electromyography in a muscle in resting conditions which causes immediately the usual Hamletic question:

«Is a muscle at rest in a state of motor unit activity or is it silent?»
(... maybe!!)

Zieliński et al.[1] noted that changes in electromyographic patterns of masticatory muscles may be associated with the presence of pain due to active myofascial trigger points (MTrPs)[2][3][4][5][6] and furthermore, during electromyography examination, significantly higher values of activity at rest within the anterior temporalis muscle were observed among MTrPs and TMDs patients compared to healthy individuals. The authors conclude that this altered pattern may be related to the presence of active MTrPs in the trapezius muscle, which, as a result of a referred pain mechanism, alters the activity of the anterior temporal (TA)

Furthermore, the same author[7] has reviewed numerous clinical studies demonstrating that depression has a substantial effect on the stomatognathic system, including the activity of the masticatory muscles, which can lead to temporomandibular disorders. Furthermore, an increase in the bioelectrical activity of the masseter muscles was observed in subjects with depressive symptoms.[8] Therefore, the aim of the study by Zieliński et al. was to determine the influence of depression quantified through the axis II protocol of RDC/TMD on the resting bioelectrical activity of the masseter and temporalis muscles. The conclusion was that moderate depression determined on the basis of the RDC/TMDs II axis questionnaire is not related to the resting activity of the selected masticatory muscles and that further research should be continued on a larger group of respondents in order to establish the relationship between psychological factors and bioelectrical parameters of masticatory muscles.

In our opinion it would be somewhat complex and perhaps irrational to try to correlate the activity of the masticatory muscles at rest in subjects suffering from more or less severe depression because the phenomenon of electrical activity in the muscles at rest is called 'spontaneous activity' in neurophysiological jargon and it is a phenomenon with a non-trivial explanation. If this phenomenon is not at least broadly clarified, the myriad of physiopathogenetic interpretations circulating in the dental field can lead to a diagnostic error.

For this reason we will present a clinical case reporting Orofacial Pain (OP) and Temporomandibular Disorders (TMDs) which, unfortunately, had encountered diagnostic difficulties in previous medical experiences.

5° Clinical case: Spontaneous Electromyographic Activity

65-year-old female patient reporting mainly Orofacial Pain (OP) in the left emirate of the face and in particular pain radiating from the masseters to the TMJ and left temporalis muscle. After about 2 years from an episode of sudden loss of consciousness at the moment in which his dentist performed a trochlear for periodontology of the lower left immigrant. From that moment on, sudden pains of the unthoracic type began and then spread to the whole left hemiface even when chewing. Colleagues saw the correlation with chewing and analyzed following the RDC protocol and defined the patient as suffering from Temporomandibular Disorders (TMDs)

Once it came to our attention, we followed all the gnathological tests (axiography, ATMs images, and surface EMGs) which did not testify for a TMDs but for an undefined but substantially neurological picture. The reason for this interpretation was precisely the execution of the surface EMG which returned the following results. The electromyographic picture of the masseters was determined following a logical sequence shown in figure 1. As can be observed, the lateral asymmetry of the EMG activity with surface electrodes of the masseters in a relaxed state (fig.1A) with the jaw maintained in rest position it was such as to require a needle EMG of the left masseter. The activity recorded with this technique (fig.1B) showed a discharge with a stable frequency of 20 Hz which presupposed a study of the motor unit. The study of the motor units of the left masseter (fig.1C) automatically selected 26 motor units whose shape, duration, spikes and turns of each unit were analysed. The data are reported in the table (fig.1D) Statistically, the following parameters can be detected: average amplitude of, a duration of , of polyphasic units. This clinical picture represents the typical pathophysiological phenomenon in which the patient reports pain but very often the diagnosis remains "difficulty in muscle relaxation", "atypical orofacial pain" or even better "fibromyalgia" and consequently the drug therapy remains symptomatic. Precisely these conditions should give the doctor the opportunity to deepen his research by carrying out and knowing at least in general terms the constituents of a coaxial needle EMG analysis, before referring the patient to a neurologist specialist.



Needle EMG steps

The EMG examination of skeletal muscles consists of four steps:

  1. Insertion activity when the needle electrode is inserted into the muscle
  2. Spontaneous activity when the muscle is at rest
  3. Motor unit potentials evoked by isolated motor discharges during moderate voluntary contraction
  4. Recruitment or interference pattern during progressive level of contraction
Insertion activity

In one subject, the insertion activity appears as high-frequency positive and negative spikes in a single group and are typically a representation of muscle fiber damage or mechanical stimulation due to needle penetration into the muscle. In our patient this activity occurred with a duration of 80 mS and was referable to a normal picture. Also note the phenomenon of plaque activity. If a needle electrode is held stationary at one point in the muscle, normal muscles at rest show absolutely no electrical activity except in the region of the neuromuscular endplate. These consist of two components: low amplitude (on the order of 10-50 μV) and low duration (1-2 msec) which to the loudspeaker EMG resemble the sound of sea shells on the ear. In our case (fig.1A) the total absence of plaque activity in the right masseter can be explained by the recording performed with surface electrodes which partially reduce the energy of the signal but the activity recorded on the left masseter, again with surface, has a width of . For the same reasoning, this activity should not be considered as plate activity since, as can be seen in fig. 1B, recording of the left masseter performed with a coaxial electrode, the amplitude is . Sometimes plaque potential spikes are indistinguishable in waveform from fibrillation potentials which also show initial negativity when recorded near the plaque. Another curious element is the similarity of the discharge model between the discharges of the neuromuscular spindles and of the plate potentials, so much so that some authors[9] hypothesized that these potentials could originate from the intrafusal muscle fibers. The discussion and the electrophysiological meaning to be given to the electrical activity observable in fig. 1B.

Spontaneous activity
Figur 2: Attività spontanea con scariche a punta positive in un muscolo denervato

In the first 2 weeks after denervation, the sensitivity of a muscle fiber to acetylcholine (ACh) increases up to 100-fold. This phenomenon known as “denervation hypersensitivity” may explain the spontaneous firing of denervated muscle fibers in response to minute ACh quanta.[10] The fact that the infusion of curare blocks the receptors of the neuromuscular plate but does not abolish the spontaneous discharge, that the denervation of the frog muscle can lead to an increased sensitivity to ACh but not generate spontaneous activity. [11]. These studies have suggested an alternative hypothesis that of slow changes in membrane potentials of metabolic origin which can periodically reach a critical level and evoke propagated spikes.[12]

These studies have suggested an alternative hypothesis that of slow changes in membrane potentials of metabolic origin which can periodically reach a critical level and evoke propagated spikes. Typical spontaneous activity phenomena, however, include fibrillation potentials, positive spike waves, fasciculation potentials, myochemical discharges, and complex repetitive discharges. Without going into overly specialized topics and considering the electrophysiological recordings of the clinical case, it is sufficient to deal with positive spike waves, fibrillation and fasciculation. Positive peak waves are sawtooth discharges that discharge spontaneously and continuously.

This type of activity is found in denervated muscles but also in a variety of myogenic conditions. In figure 2 it is possible to observe a typical tracing of spontaneous activity of positive peak waves which, compared with the clinical case under examination (fig.1B), are clearly different. By fibrillation, on the other hand, we mean potentials with a duration of and amplitude of with biphasic or triphasic waveforms and initial positivity. Fibrillation potentials triggered by spontaneous oscillations in the membrane potential typically fire at frequencies of with an average of . This phenomenon represents the spontaneous activity of one or more muscle fibers and is pathognomonic of denervation although it can appear in healthy muscles. The presence of reproducible discharges in at least two different areas of muscle usually suggests a secondary motor neuron disorder that includes anterior horn cell pathology, radiculopathies, plexopathies, axonal mono- and polyneuropathies as well as certain myopathies.

Figura 3: Tracciato di attività spontanea di fibrillazione in muscolo denervato.

In figure 3 we can observe a typical trace of spontaneous activity from denervation and compare it with the trace in figure 1C in which electrophysiological differences can be noted. The spontaneous fibrillation activity has an amplitude of , the frequency appears to be random while in the reported clinical case (fig.1C) the amplitude was and the highest frequency but particularly stable almost signifying a central pacemaker.

To avoid terminological and clinical confusion between fibrillation and fasciculation Danny-Brown and Pennybacker[13] proposed the term fasciculation to describe the spontaneous twitch of motor units. Fasciculations, therefore, represent the spontaneous discharge of a group of muscle fibers referable to the entire or partial part of the motor unit. Isolated firing of a motor unit with complex bursts of repetitive firing causes vermicular movements of the skin called myokymia.[14]

Figura 4: Fascicolazioni del muscolo orbicolaris oculi sinistro.

Repetitive firings of the same motor unit occur in bursts at regular intervals of with spikes firing at in each burst . Fasciculation potentials are typically associated with anterior horn cell pathologies but are also seen in radiculopathies, entrapment neuropathies, and muscle pain fasciculation syndrome. Figure 4 shows a clear example of fasciculations of the orbicularis oculi muscle which, compared with the traces of the clinical case (fig. 1B and C), shows a total morphological diversity and temporal representation. This diversity would strengthen the exclusion of a denervation pathology.

Motor Unit Potentials

A motor unit can be defined by amplitude, rise time, duration and phases as will be further described in the chapter 'Electromyography'. The recorded amplitude varies widely with the position of the electrode tip relative to the discharged ion current source, so a skilled operator selects a motor unit potential with a rise time of to be certain of proximity to the source. The amplitude in the normal range goes from hundreds to a few and the duration from . For the facial muscles, in particular, we refer to the values reported by Buchthal[15] whose range is for a maximum age of years. Biphasic or triphasic motor unit potentials are also present in normal muscles with an average of motor units with or more phases

Figura 5: Tracciato MUAP polifasico

The number of polyphasic units increases both in myopathies, neuropathies or motor neuron pathologies. Polyphasia therefore indicates a temporal dispersion of muscle fiber potentials within a motor unit. In some abnormalities called doublets or triplets a motor unit fires two or three times at a very short time interval and are representative of a metabolic disorder associated with hyperexcitability of the motoneural pool. In figure 5 we can observe a typical tracing of minimal voluntary activity of polyphasic MUAP and a double that represents a motor neuron pathology state. Comparing this recording of pathological motor unit with some of the fig.1C, and in particular the 5,7,13 and 23 with the values of respective amplitude duration and we can state that the activity recorded on the left masseter, of the clinical case in question, it has no electrophysiological characteristics that can be superimposed on a picture of damage to the II motor neuron.


Interferential pattern

Increasing the contraction greatly increases the motor units which start firing very rapidly and this precludes the identification of individual motor unit potentials. This phenomenon has been given the name of interference pattern. The density of the spikes and the average amplitude of the summed responses are determined by a series of factors such as: the descending output from the cortex, the number of motor neurons capable of firing, the firing frequency of each motor unit, the waveform of individual potentials and the probability of phase cancellation (collision). In our clinical case, the interference pattern recorded on the masseters was normal in both amplitude and frequency.

From the detailed analysis of the EMG tracing relating to the clinical case described, we can confirm the absence of organic damage to the motor unit and/or muscle fibers for the various reasons explained, such as: the absence of spontaneous activity, the normal morphology of the motor unit and interferential recruitment. The presence of EMG activity recorded on the left masseter still remains to be interpreted (fig.1) which, referring to the concepts described above, cannot be called "spontaneous activity" because it is not an expression of denervation, nor "lack of muscle relaxation" as the patient is unable to relax the muscle voluntarily or with stretching manoeuvres, nor of “EMG activity at rest due to psychic disorder as the psychometric tests are negative.

«This activity seems to respond to a pacemaker of central origin which fires at a stable frequency on second order motor neurons (trigeminal motor nucleus). Unfortunately it is difficult to say whether this activity is due to a functional disorder of the motor neuron II or of the cortical and/or subcortical system.»

Pharmacological experimental study

An experimental study was proposed, with the consent of the patient, in which an attempt was made to pharmacologically uncouple the brainstem neuronal activity from the cortical one. Simultaneously with the pharmacological uncoupling, the EMG activity with a coaxial needle on the left masseter was monitored and contextually the blink reflex. The experimental model, which we are going to explain briefly, was created through two essential elements, namely: the choice of the specific anesthetic for the purpose of the study (propofol) and the control of the electrophysiological activity of the brainstem through the blink reflex

Propofol

The effects of anesthetics produce loss of consciousness, memory, changes in spontaneous activity, attenuation of protective reflexes, loss of postural reflexes and also adverse effects such as hallucinations, euphoria and amnesia. Furthermore they may affect the level or homeostasis of neurotransmitters in the brain such as dopamine, noraepinephrine and acetylcholine (ACh).[16] Ach was the first neurotransmitter to be described and cholinergic neurons are widely distributed in the brain. Cholinergic mechanisms are known to be important in the striatum where a balance between dopamine and ACh release ensures normal motor output,[17] hippocampus and frontal cortex where ACh plays an important role in the regulation of consciousness, memory etc.

Propofol is thought to potentiate the inhibitory effect of GABAA receptors and to have a different action from barbiturates or benzodiazepines. An elegant study[18] carried out through intracerebral microdialysis in mice demonstrated that propofol, with doses of 50 mg/kg, decreased the release of ACh from the frontal cortex by 85%, by 72% by the hippocampus and by 19% by the striatum.

Blink reflex

The blink is a reflex that is evoked by hitting the eyebrow region on one side of the forehead. Electrophysiologically it is possible to evoke it by applying an electrical stimulus on the eyebrow arch in correspondence with the supraorbital foramen. The responses are recorded through two surface electrodes positioned on the orbicularis oculi muscle on each side and the motor potentials can be mainly represented by two events, namely the ipsilateral R1 response to stimulation and the bilateral R2. These responses represent a monosynaptic and polysynaptic circuitry for R1 and R2 respectively. The R1 response was considered to follow a trigeminal pathway in the pons while the R2 via a pathway adjacent the reticular formation reaches the facial nuclei.[19][20][21]

The main neural circuitry of the blink reflex is located in the brainstem but recent work, using functional magnetic resonance imaging (fMRI), has demonstrated that two main areas in the posterior lobe of the cerebellar hemisphere, mainly on the side ipsilateral to the stimulation, are activated during the blink reflexes in humans.[22]

Experimental procedure

The experiment consisted in simultaneously monitoring the presence of the blink relex (R1 and R2) and the EMG activity of the left masseter with a needle electrode at the time of Propofol infusion at doses of which determined a slight dissociation - alert and with eyes open . In this way it can be stated, with a good approximation, that the drug released the mesencephalic-bulbar functions.

The EMG responses (fig. 6) were as follows: upon introduction of the drug there was a brief conscious loss of cortical control, which anesthetists know clinically as transient hypertonicity and which electrophysiologically causes an increase in muscle tone. In figure 6 (phase 1: first two upper traces) we can observe the increase in the discharge frequency of the motor units ranging from , before the experiment (fig.1B), to   of phase 1.( Fig. 6, trace 1 and 2 above)

After   the drug seems to have distributed to the cortical-subcortical areas and this effect is manifested electrophysiologically with a slowing down of the EMG discharge frequency (fig. 6 traces 3 and 4 starting from the top). After others   the saturation of the cortical and, presumably, subcortical areas is complete and there is a total absence of EMG activity on the left masseter. (fig. 6 traces 5,6 and 7 starting from the top) Finally the drug is metabolised after from the electric silence and contextually the constant EMG tonic activity reappears at (fig.6 trace 8-14).

«The most interesting data was in phase 3 in which there is the total absence of MUAP while the blink reflex was still evokeable with its R1 and R2 components. This would explain the cortical and/or subcortical pacemaker but would not involve brainstem structures.»


Figure 6: EMG result of the experimental procedures. For better understanding follow text

Conclusions

Experimental conclusion

The EMG activity present in the examined subject cannot be defined as "Spontaneous activity" because it does not show characteristics of organic damage to the muscle fibers and/or the second motor neuron. If it were muscle fiber damage, the EMG activity would have remained even after administration of propofol. Indeed, it was observed that doses of propofol failed to reverse the fasciculations induced by administration of 1 mg/kg of succinylcholine.[23] The EMG activity present in the subject cannot be described as "Incapacity to relax" because the term is too generic to refer to conditions of psychic disturbances and dystonic disorders. In oromandibular dystonias, in fact, there are phases of EMG silence when the patient is asked to deviate the jaw to one side in an attempt to stretch the muscle involved. This effect is determined by an additional input from the muscle proprioceptive fibers.

The disappearance of the EMG activity at doses of propofol, a dose capable of interfering with the cortical, subcortical and striatal systems while maintaining the brainstem and pontobulbar functions intact, demonstrates that the pacemaker is at a higher level of the brainstem.

The recorded EMG activity can finally be defined as "involuntary EMG activity" and responds to a pacemaker of central origin. This continuous EMG activity would determine, in the long run, damage to the myofibrils and myoglobin, an algogenic substance, would be the terminal cause of the pain reported by the patient.

Therefore, the patient was more likely to be affected by "Focal oromandibular dystonia" than by "Tempormandibular Disorders" accompanied by phenomena of bruxism even during the day. Pharmacological evidence, in fact, suggests that the central dopaminergic system may be involved in the pathogenesis of the craniocervical dystonia and bruxism.[24] Lobbezo, in fact, demonstrated by PET imaging an abnormal lateral distribution in striatal D2-binding receptors in bruxism and craniocervical dystonias.[25] The fact that peripheral trauma may cause dystonia suggests that the sensory system may be important for the pathogenesis of focal dystonia and, in any case, it can interact only if the patient is genetically predisposed to develop a post-traumatic dystonia.[26] Using PET, thermal pain stimulation of the hand and the intradermal injection of capsaicin can determine an increase in the blood flow in the contralateral putamen and globus pallidus when compared with painless thermal stimuli.[27][28] Furthermore, the expression of the genes for prodynorphin, c-Fos and c-Jun is altered at the spinal and midbrain levels after painful stimuli.[29] In dystonics, using PET, peak blood flow in response to hand vibration was significantly reduced in both primary sensory and supplementary motor cortices when compared with normal subjects.[30] Dystonic manifestations in the patients were easily elicited by the "tonic vibration reflex" but were markedly attenuated by lidocaine blockade of the muscle spindles.[31]

These authors suggested three mechanisms that may explain the increased sensitivity to vibration: the loss of the normal inhibition of the Ia afferents, a "central" alteration, and an alteration of the excitability of the neuromuscular spindles resulting from an overactivity of motor neurons. Loss of normal inhibition was also found in other experiments; in dystonics, in fact, there is a rapid curve of the recovery cycle of the blink reflex and of the H wave.[32]

Pharmacological treatment

The patient responded positively to the administration of "SIRDALUD" at doses of 4 mg three times a day more than to the administration of diazepam. Tizanidine (Sirdalud) is in fact a molecule that acts centrally as a myotonolitic agent and is pharmacologically and chemically different from diazepam and baclofen. This is a potent inhibitor of e motoneurons for stiffness experimentally induced in mice and polysynaptic activity in cats. In the decorticated or decerebrated cat, tizanidine preferentially inhibits the tonic component of the reflex activity. The actions of tizanidine result from its agonist activity at noradrenergic subunit receptors and may also involve inhibition of the release of excitatory amino acids from spinal interneurons (EAAs).[33] The action on muscle tone, the lower sedative effect compared to diazepam and baclofen and the resulting lower muscle weakness are the characteristics that led to the choice of this drug over the others (EAAs)

Clinical conclusions

To reach a clear and meaningful clinical conclusion we need to ask ourselves the following question:

Are the Temporomandibular Disorders causing a functional alteration of the trigeminal Central Nervous system or could this clinical manifestation represent a variant of a benign acute cranial polyneuritis, or a more complex clinical state?

An adequate answer to this question was given by a study by Adour KK[34] through a prospective study using neuro-otological examination and electromyography. Seven consecutive patients with cardinal symptoms of temporomandibular joint pain syndrome (pain, tenderness, clicking, and limitation of jaw movement) were evaluated within one week of the onset of their acute symptoms. Three others with chronic symptoms were tested for comparison with acute cases. All seven patients with the acute condition had asymptomatic hypoesthesia of all three divisions of the trigeminal nerve and decreased action potential of the volitional muscles in the masseter and temporal muscles. At the end of three weeks the hypesthesia resolved in all seven patients and the muscle action potential returned to normal in six of the seven. EMG testing of the single patient with persistent reduced muscle action potentials and three patients with chronic symptoms showed fibrillation, reduced polyphasic regeneration potentials, and spontaneous fasciculations with clinical atrophy and spasm of the affected masseter and temporal muscles. Other acute cranial nerve findings included unilateral glossopharyngeal and second cervical nerve hypoesthesia, motor paralysis of the superior laryngeal branch of the vagus nerve, and increased facial nerve latency. These findings suggest a neuromuscular, rather than a psychophysiological, organic cause of temporomandibular joint pain syndrome.

Contrary to this assertion that sees an organic neuromotor disturbance at the basis of a clinical situation of TMDs, there is the opinion that the influence of the unilateral posterior crossbite on the variations of spontaneous muscle activity in the mandibular rest position and in maximum voluntary contraction is significant and confirmed by Woźniak K et al.[35]

Having already clarified, albeit not in depth, the terminological, clinical and scientific difficulty in understanding phenomena that represent an alteration of the trigeminal Central Nervous System in EMG activity at rest, we can only suggest more attention in planning experiments of this type. For example Woźniak K et al.[35] reaches these conclusions by analyzing the asymmetry between sides of the EMG activity at rest and at maximum will to contract (MVC) and the algorithm used is the following:


but we did not take into account whether these asymmetries, mainly evident in the numerator, are really related to an organic symmetry of the trigeminal motor roots. Therefore, these conclusions could have become exponentially significant if correlated to the output data from the execution of the bilateral trigeminal motor Evoked Potentials bRoot-MEPs performed by our group.

This would have had an exponential clinical significance because it would have confirmed a correlation between the functional (and non-organic) asymmetry between the crossbite and the neuromotor electrical activities.

Bibliography & references
  1. Zieliński G, Byś A, Szkutnik J, Majcher P, Ginszt M, «Electromyographic Patterns of Masticatory Muscles in Relation to Active Myofascial Trigger Points of the Upper Trapezius and Temporomandibular Disorders», in Diagnostics (Basel), 2021».
    PMID:33805008 - PMCID:PMC8063936
    DOI:10.3390/diagnostics11040580
    Open Access logo green alt2.svg
    This is an Open Access resource!
     
  2. Fernández-de-Las-Peñas C, Galán-Del-Río F, Alonso-Blanco C, Jiménez-García R, Arendt-Nielsen L, Svensson P, «Referred Pain from Muscle Trigger Points in the Masticatory and Neck-Shoulder Musculature in Women with Temporomandibular Disoders», in J Pain, Elsevier, 2010».
    PMID:20494623
    DOI:10.1016/j.jpain.2010.03.005 
  3. Peck C, Murray G, Gerzina T, «How Does Pain Affect Jaw Muscle Activity? The Integrated Pain Adaptation Model», in Aust Dent J, 2008».
    PMID:18782363
    DOI:10.1111/j.1834-7819.2008.00050.x 
  4. Pietropaoli D, Ortu E, Giannoni M, Cattaneo R, Mummolo A, Monaco A, «Alterations in Surface Electromyography Are Associated with Subjective Masticatory Muscle Pain», in Pain Res Manag, 2019».
    PMID:31885756 - PMCID:PMC6893259
    DOI:10.1155/2019/6256179
    Open Access logo green alt2.svg
    This is an Open Access resource!
     
  5. Manfredini D, Cocilovo F, Favero L, Ferronato G, Tonello S, Guarda-Nardini L, «Surface Electromyography of Jaw Muscles and Kinesiographic Recordings: Diagnostic Accuracy for Myofascial Pain», in J Oral Rehabil, Blackwell Publishing Ltd, 2011, Hoboken, New Jersey, USA».
    PMID:21480942
    DOI:10.1111/j.1365-2842.2011.02218.x 
  6. Simons DG, Travell JG, Simons LS, «Travell & Simons’ Myofascial Pain and Dysfunction: The Trigger Point Manual», Williams & Wilkins, 1999, Baltimore, MD, USA».
    ISBN: 978-0683083637 
  7. Zieliński G, Byś A, Ginszt M, Baszczowski JS, Majcher P, Gawda P, «Depression and Resting Masticatory Muscle Activity», in J Clin Med, 2020».
    PMID:32290557 - PMCID:PMC7230290
    DOI:10.3390/jcm9041097
    Open Access logo green alt2.svg
    This is an Open Access resource!
     
  8. Stocka A, Sierpinska T, Kuc J, Golebiewska M, «Relationship between depression and masticatory muscles function in a group of adolescents», in Cranio, 2018».
    PMID:28823222
    DOI:10.1080/08869634.2017.1364030 
  9. Partanen JV, Nousiainen U, «End-plate spikes in the electromyography are fusimotor unit potentials», in Neurology, 1983».
    PMID:6683798
    DOI:10.1212/wnl.33.8.1039 
  10. Axelsson J, Thesleff S, «A study of super-sensitivity of denervated mammalian skeletal muscles», in J Physiol, 1959».
    PMID:13673396 - PMCID:PMC1357014
    DOI:10.1113/jphysiol.1959.sp006233 
  11. Miledi R, «The acetylcholine sensitivity of frog musclefibres after complete or partial denervation», in J Physiol, 1960».
    PMID:14422356 - PMCID:PMC1363214 
  12. Thesleff S, «Fibrillation in denervated mammalian skeletal muscle», Oxford University Press, 1982, Oxford – in «Cukp WL e Ochoa J (eds): «Abnormal Nerves and Muscle as Impulse Genertors»». 
  13. Danny-Brown D, Pennybacker JB.: Fibrillation and fasciculation in voluntary muscle. Brain 1938; 61: 311-332
  14. Sindermann F,Conrad B, Jacobi HM, Prochazka VJ.: Unusual properties of repetitive fasciculation Elctroencephalogr Clin Neurophysiol 1973; 35: 173-179
  15. Buchtal F: An introduction to electromyography Scandinavian University Books. Copenhagen 1957
  16. Angel A. : Central neuronal pathways and the process of anaesthesia. British Journal of Anaesthesia 1993; 71:148-163
  17. Iversen SD.: Behavioural evaluation of cholinergic drug. Life Sciences 1997; 60: 1145-1152
  18. Kikuchi T, Wang Y, Sato K, Okumura F.: In vivo effects of propofol on aceylcholine release from the fronatl cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving ratsBr J Anaesth. 1998 May;80(5):644-8. doi: 10.1093/bja/80.5.644.
  19. Ongerboer de Visser BW, Kuypers HG (1978): Late blink reflex changes in lateral medullary lesions. An electrophysiological and neuro-anatomical study of Wallenberg's syndrome. Brain 101: 285-294.
  20. Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. Advances in neurology. New York: Raven Press. p 757-772.
  21. Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. Advances in neurology. New York: Raven Press. p 757-772.
  22. Dimitrova A, Weber J, Maschke M, Elles HG, Kolb FP, Forsting M, Diener HC, Timmann D. Eyeblink-related areas in human cerebellum as shown by fMRI. Hum Brain Mapp. 2002 Oct;17(2):100-15.
  23. Kararmaz A. Kaya S, TurhanogluS, Ozyilmaz A.: Effects of high-dose propofol on succinylcholine-induced fasciculations and myalgia. Acta Anaesthesiol Scand 2003; 47:180-184
  24. Watt MW, Tan EK, Jankovic J.: Bruxism and Cranial cervical dystonia: Is there a relationship? Behavioural Sciences. 1999; 17: 196-2011)  
  25. Lobbezzo F, Soucy JP, Montplaisir JY, Lavigne GJ.: Striatal D2 receptor binding in sleep bruxism: a controlled study with iodine 123 –iodobenzamide and single photon emission computer tomography. J Dent. Res. 1996 : 75 ; 1804-1810
  26. Chuldler EH, Dong WK.: The role of basal ganglia in nociception and pain Pain 1995; 60: 3-38
  27. Jones AK, Brown WD, Friston KJ, Qi LY,Frackowiak RS.: Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond B Biol Sci 1991; 244: 39-44
  28. Iadarola MJ, Berman KF, Byas-Smith M, Gracely RH, Max M, Seffiro T. et all.: Positron emission tomography (PET) studies of pain and allodynia in normal and patients with chronic neuropathic pain. Soc Neurosci Abstr 1993; 19: 1074
  29. Bullitt E.: Introduction of c-Foslike protein whitin the lumbar spinal cord and thalamus of the rat following peripheral stimulation. Brain Res 1989; 493: 391-7
  30. Tempel LW, Perlmutter JS.: Abnormal cortical responses in patients with writer’s cramp Neurology 1993; 43: 2252-7
  31. Kaji R, Rothwell JC, Katayama M, Ikeda T, Kubori T, Kohara N, Mezaki T, Shibasaki H, Kimura J.: Tonic vibration reflex and muscle afferent block in writer's cramp. Ann Neurol. 1995 Aug;38(2):155-62
  32. Tolosa E, Montserrat L, Bayes A.: Blink reflex studies in focal dystonias: enhanced excitability of brainstem interneurons in cranial dystonia and spasmodic torticollis. Mov Disord. 1988;3(1):61-9
  33. Coward DM: The drug treatment of spasticity. Sandoz 1997
  34. Adour KK. Acute temporomandibular joint pain-dysfunction syndrome: neuro-otologic and electromyographic study. Am J Otolaryngol. 1981 May;2(2):114-22. doi: 10.1016/s0196-0709(81)80028-2.PMID: 7270801
  35. 35.0 35.1 Woźniak K, Szyszka-Sommerfeld L, Lichota D. The electrical activity of the temporal and masseter muscles in patients with TMD and unilateral posterior crossbite. Biomed Res Int. 2015;2015:259372. doi: 10.1155/2015/259372. Epub 2015 Mar 26.PMID: 25883948