Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,490
edits
Line 3: | Line 3: | ||
<Center> | <Center> | ||
{| | {| | ||
|+ | |||
! colspan="5" |Tabella 1: Distanze e direzioni | ! colspan="5" |Tabella 1: Distanze e direzioni | ||
|- | |- | ||
Line 16: | Line 17: | ||
<small>(Y - latero-mediale)</small> | <small>(Y - latero-mediale)</small> | ||
|- | |- | ||
| rowspan="9" |[[File:Figura 2 finale mod..jpg|center|400x400px|'''Figura 2:''' Rappresentazione grafica reale dei punti marcati nel ciclo masticatorio]]<small>'''Figura | | rowspan="9" |[[File:Figura 2 finale mod..jpg|center|400x400px|'''Figura 2:''' Rappresentazione grafica reale dei punti marcati nel ciclo masticatorio]]<small>'''Figura 5:''' Sovrapposizione dei marker in Geogebra nel tracciato cinematico del condilo laterotrusivo</small> | ||
|2 | |2 | ||
|1.734 | |1.734 | ||
Line 57: | Line 58: | ||
</Center> | </Center> | ||
Osservando la figura e la tabella, possiamo estrapolare le distanze tra i punti marcati | Osservando la figura e la tabella, possiamo estrapolare le distanze tra i punti marcati ed in particolare segnaliamo che è stato considerato il punto <math>7L_c</math> come punto estremo in cui il condilo inverte il moto ed inizia un percorso mediali verso la massima intercuspidazione. Questo punto, anzi, la distanza tra questo punto ed il punto <math>1L_c</math> rappresenta il movimento di Bennett. Ad esempio, questa distanza è stata correttamente calcolata come circa <math>0.898 \, _\text{mm}</math> con una direzione calcolata come: | ||
<math>\theta = 131.87^\circ </math> | <math>\theta = 131.87^\circ </math> ed il corrispettivo <math>\theta^' = 42^\circ </math> | ||
Per chi desidera approfondire il formalismo matematico, riportiamo il calcolo dettagliato nel popup interattivo.{{Tooltip|2=Calcolo dettagliato: distanza tra <math>P_1 = (58.3, -50.9)</math> e <math>P_7 = (44, -34.9)</math>, distanza euclidea <math>\sqrt{(-14.3)^2 + (16)^2} \approx 21.47 \, \text{pixel}</math>, convertita in mm come <math>21.47 \times 0.04184 \approx 0.898 \, \text{mm}</math>, angolo <math>\theta = \arccos(-0.6665) \approx 131.87^\circ</math>.}} | Per chi desidera approfondire il formalismo matematico, riportiamo il calcolo dettagliato nel popup interattivo.{{Tooltip|2=Calcolo dettagliato: distanza tra <math>P_1 = (58.3, -50.9)</math> e <math>P_7 = (44, -34.9)</math>, distanza euclidea <math>\sqrt{(-14.3)^2 + (16)^2} \approx 21.47 \, \text{pixel}</math>, convertita in mm come <math>21.47 \times 0.04184 \approx 0.898 \, \text{mm}</math>, angolo <math>\theta = \arccos(-0.6665) \approx 131.87^\circ</math>.}} |
edits