Go to top

Condilo Laterotrusivo

Questo paragrafo illustra un processo matematico per calcolare la distanza e l'angolo formato tra due segmenti in un piano 2D, con applicazione nella cinematica mandibolare. La spiegazione riguarda il calcolo degli angoli tra vettori che rappresentano movimenti articolari, ad esempio i condili durante i movimenti mandibolari (Figura 5 e Tabella 1).
Tabella 1
Tracciato masticatorio Markers Distanza (mm) Direzione

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X}

Direzione Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y}
Figura 2: Rappresentazione grafica reale dei punti marcati nel ciclo masticatorio
Figura 5: Sovrapposizione dei marker in Geogebra nel tracciato cinematico del condilo laterotrusivo
2 1.734 Protrusiva Parallela
3 4.99 Protrusiva Lateralizzazione
4 6.59 Protrusiva Lateralizzazione
5 3.66 Inversione Inversione
6 0.923 Retrusiva Lateralizzazione
7* 0.898 Protrsiva Medializzazione
8 0.257 Protrusiva Medializzazione

Osservando la figura e la tabella, possiamo estrapolare le distanze tra i punti marcati ed in particolare segnaliamo che è stato considerato il punto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 7L_c} come punto estremo in cui il condilo inverte il moto ed inizia un percorso mediali verso la massima intercuspidazione. Questo punto, anzi, la distanza tra questo punto ed il punto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1L_c} rappresenta il movimento di Bennett. Ad esempio, questa distanza è stata correttamente calcolata come circa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.898 \, _\text{mm}} con una direzione calcolata come:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta = 131.87^\circ } ed il corrispettivo Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta^' = 42^\circ }

Per chi desidera approfondire il formalismo matematico, riportiamo il calcolo dettagliato nel popup interattivo. Info.pngCalcolo dettagliato: distanza tra Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1 = (58.3, -50.9)} e Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_7 = (44, -34.9)} , distanza euclidea Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{(-14.3)^2 + (16)^2} \approx 21.47 \, \text{pixel}} , convertita in mm come Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 21.47 \times 0.04184 \approx 0.898 \, \text{mm}} , angolo Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta = \arccos(-0.6665) \approx 131.87^\circ} .