Difference between revisions of "Store:MTcondilo"

Line 8: Line 8:
===Condilo Mediotrusivo===
===Condilo Mediotrusivo===


Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>P1_{M}</math> e <math>P7_{M}</math>, e il segmento che unisce i punti <math>P1_{M}</math> e <math>R_p</math>. Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.
Questi punti rappresentano posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>P1_{M}</math> e <math>P7_{M}</math>, e il segmento che unisce i punti <math>P1_{M}</math> e <math>R_p</math>. Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.


<Center>
<Center>
Line 18: Line 18:
|-
|-
| rowspan="8" |[[File:Figura condilo mediotrusivo mod..jpg|center|408x408px]]'''Figura 5:'''
| rowspan="8" |[[File:Figura condilo mediotrusivo mod..jpg|center|408x408px]]'''Figura 5:'''
|2||5.09||Protrusiva||Medializzazione
|2||4.86||Protrusiva||Medializzazione
|-
|-
|3||14.81||Protrusiva||Medializzazione
|3||12.86||Protrusiva||Medializzazione
|-
|-
|4||25.58||Protrusiva||Medializzazione
|4||23.27||Protrusiva||Medializzazione
|-
|-
|5||26.54||Protrusiva||Inversione
|5||24.61||Protrusiva||Inversione
|-
|-
|6||14.57||Protrusiva||Lateralizzazione
|6||16.56||Protrusiva||Lateralizzazione
|-
|-
|7*||6.25||Protrusiva||Lateralizzazione
|7*||6.88||Protrusiva||Lateralizzazione
|-
|-
|8||1.19||Protrusiva||Lateralizzazione
|8||1.75||Protrusiva||Lateralizzazione
|-
|-
| colspan="4" |
| colspan="4" |
Line 36: Line 36:
</Center>
</Center>


Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo abbiamo una distanza dal punto di partenza di 6.25 mm ed un angolo calcolato sull'arcoseno <math>\theta = \arccos(-0.971) \approx 166^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''. Per approfondire la procedura matematica vedi {{Tooltip|2=L'angolo tra due segmenti può essere calcolato utilizzando la trigonometria vettoriale. Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: il vettore tra il punto <math>P1_{M}</math> e il punto <math>P7_{M}</math>: <math>\vec{AB} = P7_{M}-P1_{M}=(522.5, -87)-(530.6, -61.8)=(-8.1, -25.2)</math>. Il vettore tra il punto <math>P1_{M}</math> e il punto di riferimento <math>R_p</math>: <math>\vec{AC}=R_p-P1_{M}=(530.8, -9.3)-(530.6, -61.8)=(0.2, 52.5)</math>. Il prodotto scalare tra i vettori <math>\vec{AB}</math> e <math>\vec{AC}</math> è dato dalla formula: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>. Sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-8.1) \cdot (0.2) + (-25.2) \cdot (52.5) = -1.62 - 1323.0 = -1324.62</math>. Le norme dei vettori sono: <math>|\vec{AB}| = \sqrt{(-8.1)^2 + (-25.2)^2} = \sqrt{65.61 + 635.04} = \sqrt{700.65} \approx 26.47</math> e <math>|\vec{AC}| = \sqrt{(0.2)^2 + (52.5)^2} = \sqrt{0.04 + 2756.25} = \sqrt{2756.29} \approx 52.50</math>. Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math>. Sostituendo i valori: <math>\cos(\theta) = \frac{-1324.62}{26.47 \cdot 52.50} = \frac{-1324.62}{1388.68} \approx -0.971</math>. L'angolo <math>\theta</math> è calcolato tramite la funzione arccoseno: <math>\theta = \arccos(-0.971) \approx 166.43^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''.}}  
Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo, abbiamo una distanza dal punto di partenza di 6.88 mm ed un angolo calcolato sull'arcoseno <math>\theta = \arccos(-0.971) \approx 166^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>14^\circ</math>, noto come '''Angolo di Bennett'''. Per approfondire la procedura matematica, vedi {{Tooltip|2=Calcolo sintetico: vettore <math>\vec{AB} = (-15.9, -60.4)</math>, vettore <math>\vec{AC} = (0.2, 52.5)</math>, prodotto scalare <math>\vec{AB} \cdot \vec{AC} = -3172.62</math>, norme <math>|\vec{AB}| = 62.93</math>, <math>|\vec{AC}| = 52.50</math>, <math>\cos(\theta) = \frac{-3172.62}{62.93 \cdot 52.50} \approx -0.971</math>, <math>\theta = \arccos(-0.971) \approx 166^\circ</math>.}}
 
==Conclusione sulla rototraslazione condilari==
==Conclusione sulla rototraslazione condilari==


Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,309

edits