Difference between revisions of "Store:MTcondilo"

no edit summary
Line 64: Line 64:




Le norme (lunghezze) dei due vettori sono calcolate con la formula della lunghezza del vettore: <math>|\vec{AB}|=\sqrt{AB_x^2 + AB_y^2} = \sqrt{(-15.9)^2 + (-60.4)^2} = \sqrt{252.81 + 3648.16} = \sqrt{3900.97} \approx 62.45</math><math>|\vec{AC}| = \sqrt{AC_x^2 + AC_y^2} = \sqrt{(0.9)^2 + (75.6)^2} = \sqrt{0.81 + 5710.56} = \sqrt{5711.37} \approx 75.58</math> Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori:<math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math>Sostituendo i valori:<math>\cos(\theta) = \frac{-4580.55}{62.45 \cdot 75.58} = \frac{-4580.55}{4717.25} \approx -0.971</math>Infine, l'angolo \(\theta\) è calcolato tramite la funzione arcoseno:<math>\theta = \arccos(-0.971) \approx 66.43^\circ</math>|2}}
Le norme (lunghezze) dei due vettori sono calcolate con la formula della lunghezza del vettore: <math>|\vec{AB}|=\sqrt{AB_x^2 + AB_y^2} = \sqrt{(-15.9)^2 + (-60.4)^2} = \sqrt{252.81 + 3648.16} = \sqrt{3900.97} \approx 62.45</math><math>|\vec{AC}| = \sqrt{AC_x^2 + AC_y^2} = \sqrt{(0.9)^2 + (75.6)^2} = \sqrt{0.81 + 5710.56} = \sqrt{5711.37} \approx 75.58</math> Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori:<math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math>Sostituendo i valori:<math>\cos(\theta) = \frac{-4580.55}{62.45 \cdot 75.58} = \frac{-4580.55}{4717.25} \approx -0.971</math>Infine, l'angolo \(\theta\) è calcolato tramite la funzione arcoseno:<math>\theta = \arccos(-0.9 che ci restituirà l'angolo.  
 
 
 


====Motivo dell'analisi====
====Motivo dell'analisi====
Line 95: Line 98:
Per rappresentare matematicamente l'interazione tra i condili e il tracciato del punto molare laterotrusivo, possiamo sviluppare un formalismo che modelli i movimenti complessi dei condili e l'effetto risultante sul punto molare laterotrusivo.
Per rappresentare matematicamente l'interazione tra i condili e il tracciato del punto molare laterotrusivo, possiamo sviluppare un formalismo che modelli i movimenti complessi dei condili e l'effetto risultante sul punto molare laterotrusivo.


=== 1. Coordinate dei Condili e del Punto Molarare===
===1. Coordinate dei Condili e del Punto Molarare===


Consideriamo le coordinate dei condili e del punto molare laterotrusivo nel sistema di riferimento cartesiano tridimensionale (asse X per l'orientamento antero-posteriore, asse Y per la laterolateralità e asse Z per l'altezza).
Consideriamo le coordinate dei condili e del punto molare laterotrusivo nel sistema di riferimento cartesiano tridimensionale (asse X per l'orientamento antero-posteriore, asse Y per la laterolateralità e asse Z per l'altezza).
Line 104: Line 107:
*<math>\mathbf{M}_L(t) = (x_{m_L}(t), y_{m_L}(t), z_{m_L}(t))</math>: coordinate del punto molare laterotrusivo al tempo <math>t</math>.
*<math>\mathbf{M}_L(t) = (x_{m_L}(t), y_{m_L}(t), z_{m_L}(t))</math>: coordinate del punto molare laterotrusivo al tempo <math>t</math>.


=== 2. Rotazione e Traslazione dei Condili===
===2. Rotazione e Traslazione dei Condili===


====Condilo Laterotrusivo (Lavorante)====
====Condilo Laterotrusivo (Lavorante)====
Line 124: Line 127:
con <math>R(\theta_M)</math> come matrice di rotazione che descrive la traiettoria orbitale mediotrusiva.
con <math>R(\theta_M)</math> come matrice di rotazione che descrive la traiettoria orbitale mediotrusiva.


=== 3. Tracciato del Punto Molarare Laterotrusivo===
===3. Tracciato del Punto Molarare Laterotrusivo===


Il tracciato del punto molare laterotrusivo è condizionato sia dalla rotazione retrusiva del condilo laterotrusivo che dal tragitto orbitante del condilo mediotrusivo. La posizione risultante del punto molare laterotrusivo, <math>\mathbf{M}_L(t)</math>, può essere modellata come la somma vettoriale della sua posizione iniziale e degli spostamenti dovuti a ciascun condilo:
Il tracciato del punto molare laterotrusivo è condizionato sia dalla rotazione retrusiva del condilo laterotrusivo che dal tragitto orbitante del condilo mediotrusivo. La posizione risultante del punto molare laterotrusivo, <math>\mathbf{M}_L(t)</math>, può essere modellata come la somma vettoriale della sua posizione iniziale e degli spostamenti dovuti a ciascun condilo:
Line 134: Line 137:
*<math>\alpha</math> e <math>\beta</math> sono coefficienti che indicano l’influenza proporzionale dei movimenti dei condili laterotrusivo e mediotrusivo sul tracciato del punto molare laterotrusivo.
*<math>\alpha</math> e <math>\beta</math> sono coefficienti che indicano l’influenza proporzionale dei movimenti dei condili laterotrusivo e mediotrusivo sul tracciato del punto molare laterotrusivo.


=== 4. Formalizzazione della Componente Lateroretrusiva===
===4. Formalizzazione della Componente Lateroretrusiva===


Per descrivere la componente lateroretrusiva, l’effetto orbitante del condilo mediotrusivo introduce una forza vettoriale aggiuntiva nel movimento del punto molare laterotrusivo:
Per descrivere la componente lateroretrusiva, l’effetto orbitante del condilo mediotrusivo introduce una forza vettoriale aggiuntiva nel movimento del punto molare laterotrusivo:
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,715

edits