Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,784
edits
Line 15: | Line 15: | ||
[[File:EMG Propofol.jpeg|left|200x200px]] | [[File:EMG Propofol.jpeg|left|200x200px]] | ||
When addressing topics concerning Orofacial Pain (OP) or Temporomandibular Disorders (TMDs) one often comes across statements worthy of more attention such as the statement the influence of unilateral posterior crossbite on changes in spontaneous muscle activity in the resting position mandibular and in maximum voluntary contraction. These statements lead to a deeper knowledge of the phenomenon of spontaneous activity of Motor Units (MUs) which is not trivial given the complexity of the factors and processes involved in this clinical manifestation. For this reason we present a 5th Clinical case: Spontaneous Electromyographic Activity in a referred subject with previous diagnosis of TMDs. By the end of the chapter, you will understand our suggestion regarding increased attention to experimentation design in the field of trigeminal neurophysiology. | |||
{{ArtBy|autore=Gianni Frisardi}} | {{ArtBy|autore=Gianni Frisardi}} | ||
=== | === Introduction === | ||
In this chapter we will address another subject, much discussed but also much followed and proposed as a diagnostic test in particular in patients with Orofacial Pain (OP) and Temporomandibular Disorders (TMDs), that of electromyography in a muscle in resting conditions which causes immediately the usual Hamletic question: | |||
{{q2|Is a muscle at rest in a state of motor unit activity or is it silent?|....maybe!!}} | |||
Zieliński et al.<ref>Grzegorz Zieliński, Aleksandra Byś, Jacek Szkutnik, Piotr Majcher, Michał Ginszt. Electromyographic Patterns of Masticatory Muscles in Relation to Active Myofascial Trigger Points of the Upper Trapezius and Temporomandibular Disorders. Diagnostics (Basel) 2021 Apr; 11(4): 580. Published online 2021 Mar 24. doi: 10.3390/diagnostics11040580 PMCID: PMC8063936</ref> noted that changes in electromyographic patterns of masticatory muscles may be associated with the presence of pain due to active myofascial trigger points (MTrPs)<ref>Fernández-de-Las-Peñas C., Galán-Del-Río F., Alonso-Blanco C., Jiménez-García R., Arendt-Nielsen L., Svensson P. Referred Pain from Muscle Trigger Points in the Masticatory and Neck-Shoulder Musculature in Women with Temporomandibular Disoders. J. Pain. 2010;11:1295–1304. doi: 10.1016/j. jpain.2010.03.005.</ref><ref>Peck C., Murray G., Gerzina T. How Does Pain Affect Jaw Muscle Activity? The Integrated Pain Adaptation Model. Aust. Dent. J. 2008;53:201–207. doi: 10.1111/j.1834-7819.2008.00050.x.</ref><ref>Pietropaoli D., Ortu E., Giannoni M., Cattaneo R., Mummolo A., Monaco A. Alterations in Surface Electromyography Are Associated with Subjective Masticatory Muscle Pain. Pain Res. Manag. 2019;2019:6256179. doi: 10.1155/2019/6256179. </ref><ref>Manfredini D., Cocilovo F., Favero L., Ferronato G., Tonello S., Guarda-Nardini L. Surface Electromyography of Jaw Muscles and Kinesiographic Recordings: Diagnostic Accuracy for Myofascial Pain. J. Oral Rehabil. 2011;38:791–799. doi: 10.1111/j.1365-2842.2011.02218.x. </ref><ref>Simons D.G., Travell J.G., Simons L.S. Travell & Simons’ Myofascial Pain and Dysfunction: The Trigger Point Manual. 2nd ed. Williams & Wilkins; Baltimore, MD, USA: 1999.</ref> and furthermore, during electromyography examination, significantly higher values of activity at rest within the anterior temporalis muscle were observed among MTrPs and TMDs patients compared to healthy individuals. The authors conclude that this altered pattern may be related to the presence of active MTrPs in the trapezius muscle, which, as a result of a referred pain mechanism, alters the activity of the anterior temporal (TA) | |||
Furthermore, the same author<ref>Grzegorz Zieliński, Aleksandra Byś, Michał Ginszt, Michał Baszczowski, Jacek Szkutnik, Piotr Majcher, Piotr Gawda. Depression and Resting Masticatory Muscle Activity. J Clin Med. 2020 Apr; 9(4): 1097. Published online 2020 Apr 12. doi: 10.3390/jcm9041097</ref> has reviewed numerous clinical studies demonstrating that depression has a substantial effect on the stomatognathic system, including the activity of the masticatory muscles, which can lead to temporomandibular disorders. Furthermore, an increase in the bioelectrical activity of the masseter muscles was observed in subjects with depressive symptoms.<ref>Stocka A., Sierpinska T., Kuc J., Golebiewska M. Relationship between depression and masticatory muscles function in a group of adolescents. Cranio. 2018;36:390–395. doi: 10.1080/08869634.2017.1364030.</ref> Therefore, the aim of the study by Zieliński et al. was to determine the influence of depression quantified through the axis II protocol of RDC/TMD on the resting bioelectrical activity of the masseter and temporalis muscles. The conclusion was that moderate depression determined on the basis of the RDC/TMDs II axis questionnaire is not related to the resting activity of the selected masticatory muscles and that further research should be continued on a larger group of respondents in order to establish the relationship between psychological factors and bioelectrical parameters of masticatory muscles. | |||
In our opinion it would be somewhat complex and perhaps irrational to try to correlate the activity of the masticatory muscles at rest in subjects suffering from more or less severe depression because the phenomenon of electrical activity in the muscles at rest is called 'spontaneous activity' in neurophysiological jargon and it is a phenomenon with a non-trivial explanation. If this phenomenon is not at least broadly clarified, the myriad of physiopathogenetic interpretations circulating in the dental field can lead to a diagnostic error. | |||
For this reason we will present a clinical case reporting Orofacial Pain (OP) and Temporomandibular Disorders (TMDs) which, unfortunately, had encountered diagnostic difficulties in previous medical experiences. | |||
=== 5° Clinical case: Spontaneous Electromyographic Activity === | |||
65-year-old female patient reporting mainly Orofacial Pain (OP) in the left emirate of the face and in particular pain radiating from the masseters to the TMJ and left temporalis muscle. After about 2 years from an episode of sudden loss of consciousness at the moment in which his dentist performed a trochlear for periodontology of the lower left immigrant. From that moment on, sudden pains of the unthoracic type began and then spread to the whole left hemiface even when chewing. Colleagues saw the correlation with chewing and analyzed following the RDC protocol and defined the patient as suffering from Temporomandibular Disorders (TMDs) | |||
Once it came to our attention, we followed all the gnathological tests (axiography, ATMs images, and surface EMGs) which did not testify for a TMDs but for an undefined but substantially neurological picture. The reason for this interpretation was precisely the execution of the surface EMG which returned the following results. The electromyographic picture of the masseters was determined following a logical sequence shown in figure 1. As can be observed, the lateral asymmetry of the EMG activity with surface electrodes of the masseters in a relaxed state (fig.1A) with the jaw maintained in rest position it was such as to require a needle EMG of the left masseter. The activity recorded with this technique (fig.1B) showed a discharge with a stable frequency of 20 Hz which presupposed a study of the motor unit. The study of the motor units of the left masseter (fig.1C) automatically selected 26 motor units whose shape, duration, spikes and turns of each unit were analysed. The data are reported in the table (fig.1D) Statistically, the following parameters can be detected: average amplitude of<math>\approxeq348\mu V</math>, a duration of <math>8.7 msec</math>, <math>23%</math> of polyphasic units. This clinical picture represents the typical pathophysiological phenomenon in which the patient reports pain but very often the diagnosis remains "difficulty in muscle relaxation", "atypical orofacial pain" or even better "fibromyalgia" and consequently the drug therapy remains symptomatic. Precisely these conditions should give the doctor the opportunity to deepen his research by carrying out and knowing at least in general terms the constituents of a coaxial needle EMG analysis, before referring the patient to a neurologist specialist. | |||
<center> | <center> | ||
<gallery widths="350" heights="200" perrow="2" slideshow""=""> | <gallery widths="350" heights="200" perrow="2" slideshow""=""> | ||
File:Distonic 2.jpg|''' | File:Distonic 2.jpg|'''Figure 1A:''' Surface EMG showing large motor unit (MUs) firing activity in the left masseter muscle | ||
File:Distonic 3.jpg|''' | File:Distonic 3.jpg|'''Figure 1B:''' Analysis of the discharge frequency of masseter motor units (MUs) | ||
File:Distonic 1.jpg|''' | File:Distonic 1.jpg|'''Figure 1C:''' Analysis of the morphology of the masseter motor unit (MUs) | ||
File:Distonic 4.jpg|''' | File:Distonic 4.jpg|'''Figure 1D:''' Calculation of the discharge parameters of the MUs | ||
</gallery> | </gallery> | ||
</center> | </center> | ||
Line 52: | Line 51: | ||
==== | ==== Needle EMG steps ==== | ||
The EMG examination of skeletal muscles consists of four steps: | |||
# | # Insertion activity when the needle electrode is inserted into the muscle | ||
# | # Spontaneous activity when the muscle is at rest | ||
# | # Motor unit potentials evoked by isolated motor discharges during moderate voluntary contraction | ||
# | # Recruitment or interference pattern during progressive level of contraction | ||
===== | ===== Insertion activity ===== | ||
===== | |||
In one subject, the insertion activity appears as high-frequency positive and negative spikes in a single group and are typically a representation of muscle fiber damage or mechanical stimulation due to needle penetration into the muscle. In our patient this activity occurred with a duration of 80 mS and was referable to a normal picture. Also note the phenomenon of plaque activity. If a needle electrode is held stationary at one point in the muscle, normal muscles at rest show absolutely no electrical activity except in the region of the neuromuscular endplate. These consist of two components: low amplitude (on the order of 10-50 μV) and low duration (1-2 msec) which to the loudspeaker EMG resemble the sound of sea shells on the ear. In our case (fig.1A) the total absence of plaque activity in the right masseter can be explained by the recording performed with surface electrodes which partially reduce the energy of the signal but the activity recorded on the left masseter, again with surface, has a width of<math>\approxeq100\mu V</math> . For the same reasoning, this activity should not be considered as plate activity since, as can be seen in fig. 1B, recording of the left masseter performed with a coaxial electrode, the amplitude is <math>\approxeq 400\mu V</math>. Sometimes plaque potential spikes are indistinguishable in waveform from fibrillation potentials which also show initial negativity when recorded near the plaque. Another curious element is the similarity of the discharge model between the discharges of the neuromuscular spindles and of the plate potentials, so much so that some authors<ref>Partanen JV, Nousiainen U. : End-plate spikes in the electromyography are fusimotor unit potentials. Neurology 1983; 33:039-1043, </ref> hypothesized that these potentials could originate from the intrafusal muscle fibers. The discussion and the electrophysiological meaning to be given to the electrical activity observable in fig. 1B. | |||
===== Spontaneous activity ===== | |||
[[File:EMG a punta+.jpeg|thumb|'''Figur 2:''' Attività spontanea con scariche a punta positive in un muscolo denervato]] | [[File:EMG a punta+.jpeg|thumb|'''Figur 2:''' Attività spontanea con scariche a punta positive in un muscolo denervato]] | ||
In the first 2 weeks after denervation, the sensitivity of a muscle fiber to acetylcholine (ACh) increases up to 100-fold. This phenomenon known as “denervation hypersensitivity” may explain the spontaneous firing of denervated muscle fibers in response to minute ACh quanta.<ref>Axelsson J, Thesleff S.: A study of super-sensitivity of denervated mammalian skeletal muscles. J Physiol (Lond) 1957:149;178-193</ref> The fact that the infusion of curare blocks the receptors of the neuromuscular plate but does not abolish the spontaneous discharge, that the denervation of the frog muscle can lead to an increased sensitivity to ACh but not generate spontaneous activity. <ref>Miledi R.: The acetylcholine sensitivity of frog musclefibres after complete or partial denervation. J Physiol (Lond) 1960:151;1-23 </ref>. These studies have suggested an alternative hypothesis that of slow changes in membrane potentials of metabolic origin which can periodically reach a critical level and evoke propagated spikes.<ref>Thesleff S: Fibrillation in denervated mammalian skeletal muscle. In Cukp WL e Ochoa J (eds): Abnormal Nerves and Muscle as Impulse Genertors. Oxford University Press. Oxford 1982, pp 678-694</ref> | |||
These studies have suggested an alternative hypothesis that of slow changes in membrane potentials of metabolic origin which can periodically reach a critical level and evoke propagated spikes. Typical spontaneous activity phenomena, however, include fibrillation potentials, positive spike waves, fasciculation potentials, myochemical discharges, and complex repetitive discharges. Without going into overly specialized topics and considering the electrophysiological recordings of the clinical case, it is sufficient to deal with positive spike waves, fibrillation and fasciculation. Positive peak waves are sawtooth discharges that discharge spontaneously and continuously. | |||
This type of activity is found in denervated muscles but also in a variety of myogenic conditions. In figure 2 it is possible to observe a typical tracing of spontaneous activity of positive peak waves which, compared with the clinical case under examination (fig.1B), are clearly different. By fibrillation, on the other hand, we mean potentials with a duration of <math>1-5</math> <math>msec</math> and amplitude of <math>\approxeq 20-200\mu V</math> with biphasic or triphasic waveforms and initial positivity. Fibrillation potentials triggered by spontaneous oscillations in the membrane potential typically fire at frequencies of <math>1-30 Hz</math> with an average of <math>13Hz</math>. This phenomenon represents the spontaneous activity of one or more muscle fibers and is pathognomonic of denervation although it can appear in healthy muscles. The presence of reproducible discharges in at least two different areas of muscle usually suggests a secondary motor neuron disorder that includes anterior horn cell pathology, radiculopathies, plexopathies, axonal mono- and polyneuropathies as well as certain myopathies. | |||
[[File:EMG fibrillazione.jpeg|left|thumb|'''Figura 3:''' Tracciato di attività spontanea di fibrillazione in muscolo denervato.]] | [[File:EMG fibrillazione.jpeg|left|thumb|'''Figura 3:''' Tracciato di attività spontanea di fibrillazione in muscolo denervato.]] | ||
In figura 3 possiamo osservare un tipico tracciato di attività spontanea da denervazione e confrontarlo con il tracciato in figura 1C in cui si possono notare delle diversità elettrofisiologiche. L’attività spontanea di fibrillazione ha un ampiezza di <math>\approxeq 200\mu V</math>, la frequenza risulta essere <math>13Hz</math> con andamento random mentre nel caso clinico riportato (fig.1C) l’ampiezza era di <math>\approxeq 400\mu V</math>e la frequenza più alta (<math>\approxeq 13Hz</math>) ma particolarmente stabile quasi a significare un pacemaker centrale. | In figura 3 possiamo osservare un tipico tracciato di attività spontanea da denervazione e confrontarlo con il tracciato in figura 1C in cui si possono notare delle diversità elettrofisiologiche. L’attività spontanea di fibrillazione ha un ampiezza di <math>\approxeq 200\mu V</math>, la frequenza risulta essere <math>13Hz</math> con andamento random mentre nel caso clinico riportato (fig.1C) l’ampiezza era di <math>\approxeq 400\mu V</math>e la frequenza più alta (<math>\approxeq 13Hz</math>) ma particolarmente stabile quasi a significare un pacemaker centrale. |
edits