Difference between revisions of "5° Clinical case: Spontaneous Electromyographic Activity"

no edit summary
Line 60: Line 60:


===== Insertion activity =====
===== Insertion activity =====


In one subject, the insertion activity appears as high-frequency positive and negative spikes in a single group and are typically a representation of muscle fiber damage or mechanical stimulation due to needle penetration into the muscle. In our patient this activity occurred with a duration of 80 mS and was referable to a normal picture. Also note the phenomenon of plaque activity. If a needle electrode is held stationary at one point in the muscle, normal muscles at rest show absolutely no electrical activity except in the region of the neuromuscular endplate. These consist of two components: low amplitude (on the order of 10-50 μV) and low duration (1-2 msec) which to the loudspeaker EMG resemble the sound of sea shells on the ear. In our case (fig.1A) the total absence of plaque activity in the right masseter can be explained by the recording performed with surface electrodes which partially reduce the energy of the signal but the activity recorded on the left masseter, again with surface, has a width of<math>\approxeq100\mu V</math> . For the same reasoning, this activity should not be considered as plate activity since, as can be seen in fig. 1B, recording of the left masseter performed with a coaxial electrode, the amplitude is <math>\approxeq 400\mu V</math>. Sometimes plaque potential spikes are indistinguishable in waveform from fibrillation potentials which also show initial negativity when recorded near the plaque. Another curious element is the similarity of the discharge model between the discharges of the neuromuscular spindles and of the plate potentials, so much so that some authors<ref>Partanen JV, Nousiainen U. : End-plate spikes in the electromyography are fusimotor unit potentials. Neurology 1983; 33:039-1043, </ref> hypothesized that these potentials could originate from the intrafusal muscle fibers. The discussion and the electrophysiological meaning to be given to the electrical activity observable in fig. 1B.
In one subject, the insertion activity appears as high-frequency positive and negative spikes in a single group and are typically a representation of muscle fiber damage or mechanical stimulation due to needle penetration into the muscle. In our patient this activity occurred with a duration of 80 mS and was referable to a normal picture. Also note the phenomenon of plaque activity. If a needle electrode is held stationary at one point in the muscle, normal muscles at rest show absolutely no electrical activity except in the region of the neuromuscular endplate. These consist of two components: low amplitude (on the order of 10-50 μV) and low duration (1-2 msec) which to the loudspeaker EMG resemble the sound of sea shells on the ear. In our case (fig.1A) the total absence of plaque activity in the right masseter can be explained by the recording performed with surface electrodes which partially reduce the energy of the signal but the activity recorded on the left masseter, again with surface, has a width of<math>\approxeq100\mu V</math> . For the same reasoning, this activity should not be considered as plate activity since, as can be seen in fig. 1B, recording of the left masseter performed with a coaxial electrode, the amplitude is <math>\approxeq 400\mu V</math>. Sometimes plaque potential spikes are indistinguishable in waveform from fibrillation potentials which also show initial negativity when recorded near the plaque. Another curious element is the similarity of the discharge model between the discharges of the neuromuscular spindles and of the plate potentials, so much so that some authors<ref>Partanen JV, Nousiainen U. : End-plate spikes in the electromyography are fusimotor unit potentials. Neurology 1983; 33:039-1043, </ref> hypothesized that these potentials could originate from the intrafusal muscle fibers. The discussion and the electrophysiological meaning to be given to the electrical activity observable in fig. 1B.
Line 72: Line 71:
This type of activity is found in denervated muscles but also in a variety of myogenic conditions. In figure 2 it is possible to observe a typical tracing of spontaneous activity of positive peak waves which, compared with the clinical case under examination (fig.1B), are clearly different. By fibrillation, on the other hand, we mean potentials with a duration of <math>1-5</math> <math>msec</math> and amplitude of <math>\approxeq 20-200\mu V</math> with biphasic or triphasic waveforms and initial positivity. Fibrillation potentials triggered by spontaneous oscillations in the membrane potential typically fire at frequencies of <math>1-30 Hz</math> with an average of <math>13Hz</math>. This phenomenon represents the spontaneous activity of one or more muscle fibers and is pathognomonic of denervation although it can appear in healthy muscles. The presence of reproducible discharges in at least two different areas of muscle usually suggests a secondary motor neuron disorder that includes anterior horn cell pathology, radiculopathies, plexopathies, axonal mono- and polyneuropathies as well as certain myopathies.                                                                                                                                                                                                                                                                                                                                                                                                           
This type of activity is found in denervated muscles but also in a variety of myogenic conditions. In figure 2 it is possible to observe a typical tracing of spontaneous activity of positive peak waves which, compared with the clinical case under examination (fig.1B), are clearly different. By fibrillation, on the other hand, we mean potentials with a duration of <math>1-5</math> <math>msec</math> and amplitude of <math>\approxeq 20-200\mu V</math> with biphasic or triphasic waveforms and initial positivity. Fibrillation potentials triggered by spontaneous oscillations in the membrane potential typically fire at frequencies of <math>1-30 Hz</math> with an average of <math>13Hz</math>. This phenomenon represents the spontaneous activity of one or more muscle fibers and is pathognomonic of denervation although it can appear in healthy muscles. The presence of reproducible discharges in at least two different areas of muscle usually suggests a secondary motor neuron disorder that includes anterior horn cell pathology, radiculopathies, plexopathies, axonal mono- and polyneuropathies as well as certain myopathies.                                                                                                                                                                                                                                                                                                                                                                                                           
[[File:EMG fibrillazione.jpeg|left|thumb|'''Figura 3:''' Tracciato di attività spontanea di fibrillazione in muscolo denervato.]]
[[File:EMG fibrillazione.jpeg|left|thumb|'''Figura 3:''' Tracciato di attività spontanea di fibrillazione in muscolo denervato.]]
In figura 3 possiamo osservare un tipico tracciato di attività spontanea da denervazione e confrontarlo con il tracciato in figura 1C in cui si possono notare delle diversità elettrofisiologiche. L’attività spontanea di fibrillazione ha un ampiezza di <math>\approxeq 200\mu V</math>, la frequenza risulta essere <math>13Hz</math> con andamento random mentre nel caso clinico riportato (fig.1C) l’ampiezza era  di <math>\approxeq 400\mu V</math>e la frequenza più alta (<math>\approxeq 13Hz</math>) ma particolarmente stabile quasi a significare un pacemaker centrale.                                                                                                                                                                                                     
In figure 3 we can observe a typical trace of spontaneous activity from denervation and compare it with the trace in figure 1C in which electrophysiological differences can be noted. The spontaneous fibrillation activity has an amplitude of <math>\approxeq 200\mu V</math> , the frequency <math>13Hz</math> appears to be random while in the reported clinical case (fig.1C) the amplitude was <math>\approxeq 400\mu V</math> and the highest frequency but particularly stable almost signifying a central pacemaker.                                                                                                                                                                                                     


Per evitare confusione terminologica e clinica tra fibrillazione e fascicolazione Danny-Brown e Pennybacker<ref>Danny-Brown D, Pennybacker JB.: Fibrillation and fasciculation in voluntary muscle. Brain 1938; 61: 311-332</ref> proposero il termine di fascicolazione per descrivere la spontanea contrazione (twitch) di unità motorie. Le fascicolazione, perciò, rappresentano la scarica spontanea di un gruppo di fibre muscolari riferibili all’intera o parziale parte dell’unità motoria. Isolate scariche di una unità motoria con complesse bursts di ripetitive scariche causano movimenti vermicolari della pelle chiamati miochimie.<ref>Sindermann F,Conrad B, Jacobi HM, Prochazka VJ.: Unusual properties of repetitive fasciculation Elctroencephalogr Clin Neurophysiol 1973; 35: 173-179</ref>
To avoid terminological and clinical confusion between fibrillation and fasciculation Danny-Brown and Pennybacker<ref>Danny-Brown D, Pennybacker JB.: Fibrillation and fasciculation in voluntary muscle. Brain 1938; 61: 311-332</ref> proposed the term fasciculation to describe the spontaneous twitch of motor units. Fasciculations, therefore, represent the spontaneous discharge of a group of muscle fibers referable to the entire or partial part of the motor unit. Isolated firing of a motor unit with complex bursts of repetitive firing causes vermicular movements of the skin called myokymia.<ref>Sindermann F,Conrad B, Jacobi HM, Prochazka VJ.: Unusual properties of repetitive fasciculation Elctroencephalogr Clin Neurophysiol 1973; 35: 173-179</ref>[[File:Fascicolazioni .jpeg|thumb|'''Figura 4:''' Fascicolazioni del muscolo orbicolaris oculi sinistro.]]
[[File:Fascicolazioni .jpeg|thumb|'''Figura 4:''' Fascicolazioni del muscolo orbicolaris oculi sinistro.]]
Repetitive firings of the same motor unit occur in bursts at regular intervals of <math>0.1-10sec</math> with <math>2-10</math> spikes firing at in each burst <math>30-40 Hz</math>. Fasciculation potentials are typically associated with anterior horn cell pathologies but are also seen in radiculopathies, entrapment neuropathies, and muscle pain fasciculation syndrome. Figure 4 shows a clear example of fasciculations of the orbicularis oculi muscle which, compared with the traces of the clinical case (fig. 1B and C), shows a total morphological diversity and temporal representation. This diversity would strengthen the exclusion of a denervation pathology.                                                                                                                                                                                                     
Scariche ripetitive della stessa unità motoria occorrono in bursts a intervalli regolari di <math>0.1-10sec</math> con <math>2-10</math> spikes che scaricano a <math>30-40 Hz</math> in ciascun burst. I potenziali di fascicolazione sono tipicamente associati con patologie delle cellule delle corna anteriori ma sono anche osservate in radicolopatie, neuropatie da intrappolamento, e la sindrome di fascicolazione dolorosa muscolare. In figura 4 si può osservare un chiaro esempio di fascicolazioni del muscolo orbicolare dell’occhio  che confrontato con i tracciati del caso clinico (fig.1B e C) mostra una totale diversità morfologica e di rappresentazione temporale. Questa diversità rafforzerebbe l’esclusione di una patologia da denervazione.                                                                                                                                                                                                     


===== Potenziali di Unità Motoria =====
===== Motor Unit Potentials =====
Una unità motoria  può essere definita dall’ampiezza, il rise time, dalla durata e dalle fasi come verrà meglio descritto nel capitolo 'Elettromiografia'. L’ampiezza registrata varia ampiamente con la posizione della punta dell’elettrodo relativa alla sorgente di corrente ionica scaricata, per cui un operatore esperto  seleziona un potenziale di unità motoria con una rise time di <math>\approxeq 500\mu sec</math> per essere certi della vicinanza con la sorgente. L’ampiezza nel range della normalità va da centinaia di <math>\mu V</math> ad alcuni <math>m V</math> e la durata  da <math>5-10 msec</math>. Per i muscoli facciali, in particolare, ci si riferisce ai valori riportati da Buchthal <ref>Buchtal F: An introduction to electromyography Scandinavian University Books. Copenhagen 1957</ref> il cui range è <math>4,2-7,5 msec</math> per una età massima di <math>75</math> anni. I potenziali di unità motoria bifasici o trifasici sono presenti anche in muscoli normali con una media di  <math>5-15%</math> di unità con <math>4</math> o più fasi.          
A motor unit can be defined by amplitude, rise time, duration and phases as will be further described in the chapter 'Electromyography'. The recorded amplitude varies widely with the position of the electrode tip relative to the discharged ion current source, so a skilled operator selects a motor unit potential with a rise time of <math>\approxeq 500\mu sec</math> to be certain of proximity to the source. The amplitude in the normal range goes from hundreds to <math>\mu V</math> a few <math>m V</math> and the duration from <math>5-10 msec</math>. For the facial muscles, in particular, we refer to the values reported by Buchthal<ref>Buchtal F: An introduction to electromyography Scandinavian University Books. Copenhagen 1957</ref> whose range is <math>4,2-7,5 msec</math> for a maximum <math>75</math> age of years. Biphasic or triphasic motor unit potentials are also present in normal muscles with an average of motor units <math>5-15%</math>with <math>4</math> or more phases          
         
[[File:EMG polifasico.jpeg|left|thumb|'''Figura 5:''' Tracciato MUAP polifasico]]
[[File:EMG polifasico.jpeg|left|thumb|'''Figura 5:''' Tracciato MUAP polifasico]]
Il numero di unità polifasiche aumentano sia nelle miopatie, neuropatie o nelle patologie del motoneurone. La polifasia indica, dunque, una dispersione  temporale dei potenziali di fibra muscolari dentro una unità motoria. In alcune anormalità chiamate doppiette o triplette una unità motoria spara due o tre volte ad una intervallo di tempo molto corto e sono rappresentative di un disturbo metabolico associato ad ipereccitabilità del pool motoneurale.        
The number of polyphasic units increases both in myopathies, neuropathies or motor neuron pathologies. Polyphasia therefore indicates a temporal dispersion of muscle fiber potentials within a motor unit. In some abnormalities called doublets or triplets a motor unit fires two or three times at a very short time interval and are representative of a metabolic disorder associated with hyperexcitability of the motoneural pool. In figure 5 we can observe a typical tracing of minimal voluntary activity of polyphasic MUAP and a double that represents a motor neuron pathology state. Comparing this recording of pathological motor unit with some of the fig.1C, and in particular the 5,7,13 and 23 with the values of respective amplitude <math>678\mu V;419\mu V3;686\mu V e 530\mu V</math>duration <math>8.2, 4.2,6.2 msec </math> and <math>8.4 msec </math> we can state that the activity recorded on the left masseter, of the clinical case in question, it has no electrophysiological characteristics that can be superimposed on a picture of damage to the II motor neuron.         
In figura 5 possiamo osservare un tipico tracciato a minima attività volontaria di MUAP polifasico ed una doppietta che rappresenta uno stato di patologia del motoneurone. Confrontando questa registrazione di unità motoria patologica con alcune della fig.1C, ed in particolare la 5,7,13 e 23 con i valori di ampiezza rispettivi <math>678\mu V;419\mu V3;686\mu V e 530\mu V</math> durata <math>8.2, 4.2,6.2 msec </math> e e 8.4 <math>8.4 msec </math> possiamo affermare che l’attività registrata sul massetere di sinistra, del caso clinico in questione, non ha nessuna caratteristica elettrofisiologica sovrapponibile ad un quadro di danno del II motoneurone.         
       


   
   
===== Pattern Interferenziale =====
===== Interferential pattern =====
Aumentando la contrazione aumentano molto le unità motorie che iniziano a scaricare molto rapidamente e ciò precludono l’identificazione di potenziali di unità motorie individuali. Questo fenomeno ha dato il nome di pattern interferenziale. La densità degli spikes e la media ampiezza delle risposte sommate sono determinate da una serie di fattori come: l’output discendente dalla corteccia, il numero di motoneuroni capaci di scaricare, la frequenza di scarica di ciascuna unità motoria, la forma d’onda di potenziali individuali e la probabilità della cancellazione di fase (collisione). Nel nostro caso clinico il pattern interfernziale registrato sui masseteri risultò normale sia in ampiezza che in frequenza.  
Increasing the contraction greatly increases the motor units which start firing very rapidly and this precludes the identification of individual motor unit potentials. This phenomenon has been given the name of interference pattern. The density of the spikes and the average amplitude of the summed responses are determined by a series of factors such as: the descending output from the cortex, the number of motor neurons capable of firing, the firing frequency of each motor unit, the waveform of individual potentials and the probability of phase cancellation (collision). In our clinical case, the interference pattern recorded on the masseters was normal in both amplitude and frequency.  


Dall’analisi dettagliata del tracciato EMG relativo al caso clinico descritto possiamo confermare l’assenza di un danno organico dell’unità motoria e/o delle fibre muscolari per i vari motivi esposti quali: l’assenza di attività spontanea, la normale morfologia dell’unità motoria e del reclutamento interferenziale. Rimane ancora da interpretare la presenza di attività EMG registrata sul massetere sinistro (fig.1) che, riferendosi ai concetti sopradescritti, non può essere denominata “attività spontanea” perché non espressione di denervazione, ne “mancato rilassamento muscolare” in quanto il paziente è incapace di rilassare il muscolo volontariamente o con manovre di stiramento, ne  di “attività EMG a riposo da disturbo psichico in quanto negativi i tests psicometrici. {{q2|Questa attività sembra rispondere ad una pacemaker di origine centrale che scarica a frequenza stabile sui motoneuroni di II ordine ( nucleo motorio trigeminale). Purtroppo è difficile dire se questa attività sia dovuta ad un disturbo funzionale del II motoneurone o del sistema corticale e/o sottocorticale.|}}
From the detailed analysis of the EMG tracing relating to the clinical case described, we can confirm the absence of organic damage to the motor unit and/or muscle fibers for the various reasons explained, such as: the absence of spontaneous activity, the normal morphology of the motor unit and interferential recruitment. The presence of EMG activity recorded on the left masseter still remains to be interpreted (fig.1) which, referring to the concepts described above, cannot be called "spontaneous activity" because it is not an expression of denervation, nor "lack of muscle relaxation" as the patient is unable to relax the muscle voluntarily or with stretching manoeuvres, nor of “EMG activity at rest due to psychic disorder as the psychometric tests are negative.{{q2|This activity seems to respond to a pacemaker of central origin which fires at a stable frequency on second order motor neurons (trigeminal motor nucleus). Unfortunately it is difficult to say whether this activity is due to a functional disorder of the motor neuron II or of the cortical and/or subcortical system.|}}


E’ stato proposto, con il consenso della paziente, uno studio sperimentale in cui si è tentato di  disaccoppiare farmacologicamente l’attività neuronale troncoencefalico da quella corticale. Simultaneamente al  disaccoppiamento farmacologico veniva monitorato l’attività EMG con ago coassiale sul massetere sinistro e contestualmente il blink reflex. Il modello sperimentale, che andremo a spiegare brevemente, è stato realizzato attraverso due elementi essenziali e cioè: la scelta dell’anestetico specifico per lo scopo dello studio (propofol) ed il controllo della attività elettrofisiologica troncoencefalica attraverso il blink reflex  
==== Pharmacological experimental study ====
An experimental study was proposed, with the consent of the patient, in which an attempt was made to pharmacologically uncouple the brainstem neuronal activity from the cortical one. Simultaneously with the pharmacological uncoupling, the EMG activity with a coaxial needle on the left masseter was monitored and contextually the blink reflex. The experimental model, which we are going to explain briefly, was created through two essential elements, namely: the choice of the specific anesthetic for the purpose of the study (propofol) and the control of the electrophysiological activity of the brainstem through the blink reflex  


'''Propofol:''' Gli effetti degli anestetici producono perdita di coscienza, di memoria, cambiamenti dell’attività spontanea, attenuazione dei riflessi di protezione, perdita dei riflessi posturali ed anche effetti sfavorevoli come allucinazioni, euforia ed amnesie. Inoltre essi possono influenzare il livello o l’omeostasi dei neurotrasmettitori nel cervello come la dopamina, noraepinefrina e l’acetilcolina (ACh).<ref>Angel A. : Central neuronal pathways and the process of anaesthesia. British Journal of Anaesthesia 1993; 71:148-163</ref> La Ach fu il primo neurotrasmettitore ad essere descritto ed i neuroni colinergici sono distribuiti ampiamente nel cervello. I meccanismi colinergici sono conosciuti essere importanti nello striato dove un bilanciamento tra dopamina ed il rilascio di ACh assicurano una normale output motorio,<ref>Iversen SD.: Behavioural evaluation of cholinergic drug. Life Sciences 1997; 60: 1145-1152</ref> nell’ippocampo e nella corteccia frontale dove Ach gioca un ruolo importante per la regolazione della coscienza, memoria ecc.
===== '''Propofol''' =====
The effects of anesthetics produce loss of consciousness, memory, changes in spontaneous activity, attenuation of protective reflexes, loss of postural reflexes and also adverse effects such as hallucinations, euphoria and amnesia. Furthermore they may affect the level or homeostasis of neurotransmitters in the brain such as dopamine, noraepinephrine and acetylcholine (ACh).<ref>Angel A. : Central neuronal pathways and the process of anaesthesia. British Journal of Anaesthesia 1993; 71:148-163</ref> Ach was the first neurotransmitter to be described and cholinergic neurons are widely distributed in the brain. Cholinergic mechanisms are known to be important in the striatum where a balance between dopamine and ACh release ensures normal motor output,<ref>Iversen SD.: Behavioural evaluation of cholinergic drug. Life Sciences 1997; 60: 1145-1152</ref> hippocampus and frontal cortex where ACh plays an important role in the regulation of consciousness, memory etc.


Il Propofol si pensa potenziare l’effetto inibitorio dei recettori GABAA ed avere un’azione diversa dai barbiturici o benzodiazepine. Un elegante studio<ref>Kikuchi T, Wang Y, Sato K, Okumura F.: In vivo effects of propofol on aceylcholine release from the fronatl cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats</ref> realizzato attraverso microdialisi intracerebrale nel topo ha permesso di dimostrare che il propofol, con dosi di 50 mg/kg, diminuisce il rilascio di ACh dalla corteccia frontale del 85%, del 72 % dall’ippocampo e del 19% dallo striato.  
Propofol is thought to potentiate the inhibitory effect of GABAA receptors and to have a different action from barbiturates or benzodiazepines. An elegant study<ref>Kikuchi T, Wang Y, Sato K, Okumura F.: In vivo effects of propofol on aceylcholine release from the fronatl cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats</ref> carried out through intracerebral microdialysis in mice demonstrated that propofol, with doses of 50 mg/kg, decreased the release of ACh from the frontal cortex by 85%, by 72% by the hippocampus and by 19% by the striatum.


'''Blink reflex:''' Il blink è un riflesso che si evoca percuotendo la regione sopraccigliare su un lato della fronte. Elettrofisiologicamente è possibile evocarlo applicando uno stimolo elettrico sull’arcata sopracigliare in corrispondenza del forame sovraorbitario. Le risposte vengono registrate attraverso due elettrodi di superficie posizionati sul muscolo orbicolare dell’occhio  di ciascun lato e i potenziali motori possono essere rappresentati principalmente da due eventi e cioè dalla risposta R1 ipsilaterale alla stimolazione e la R2 bilaterale. Queste risposte rappresentano una circuiteria monosinaptica e polisinaptica per la R1 e R2 ripettivamente. La risposta R1 è stata considerata seguire un percorso trigeminale nel ponte mentre la R2 attraverso un percorso adiacente la formazione reticolare  raggiunge i nuclei facciali.<ref>Ongerboer de Visser BW, Kuypers HG (1978): Late blink reflex changes in lateral medullary lesions. An electrophysiological and neuro-anatomical study of Wallenberg's syndrome. ''Brain'' '''101''': 285-294. </ref><ref>Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. ''Advances in neurology''. New York: Raven Press. p 757-772.</ref><ref>Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. ''Advances in neurology''. New York: Raven Press. p 757-772.</ref>  
===== '''Blink reflex''' =====
The blink is a reflex that is evoked by hitting the eyebrow region on one side of the forehead. Electrophysiologically it is possible to evoke it by applying an electrical stimulus on the eyebrow arch in correspondence with the supraorbital foramen. The responses are recorded through two surface electrodes positioned on the orbicularis oculi muscle on each side and the motor potentials can be mainly represented by two events, namely the ipsilateral R1 response to stimulation and the bilateral R2. These responses represent a monosynaptic and polysynaptic circuitry for R1 and R2 respectively. The R1 response was considered to follow a trigeminal pathway in the pons while the R2 via a pathway adjacent the reticular formation reaches the facial nuclei.<ref>Ongerboer de Visser BW, Kuypers HG (1978): Late blink reflex changes in lateral medullary lesions. An electrophysiological and neuro-anatomical study of Wallenberg's syndrome. ''Brain'' '''101''': 285-294. </ref><ref>Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. ''Advances in neurology''. New York: Raven Press. p 757-772.</ref><ref>Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. ''Advances in neurology''. New York: Raven Press. p 757-772.</ref>


Il principale circuito neuronale del blink reflex è localizzato nel tronco encefalico ma recenti lavori, impiegando la Risonanza Magnetica Funzionale (RMNf), hanno dimostrato che due principali aree nel lobo posteriore dell’emisfero cerebellare, principalmente sul lato ipsilaterale alla stimolazione, sono attivate durante i riflessi di ammicamento nell’uomo.<ref>Dimitrova A, Weber J, Maschke M, Elles HG, Kolb FP, Forsting M, Diener HC, Timmann D. Eyeblink-related areas in human cerebellum as shown by fMRI. Hum Brain Mapp. 2002 Oct;17(2):100-15.</ref>
The main neural circuitry of the blink reflex is located in the brainstem but recent work, using functional magnetic resonance imaging (fMRI), has demonstrated that two main areas in the posterior lobe of the cerebellar hemisphere, mainly on the side ipsilateral to the stimulation, are activated during the blink reflexes in humans.<ref>Dimitrova A, Weber J, Maschke M, Elles HG, Kolb FP, Forsting M, Diener HC, Timmann D. Eyeblink-related areas in human cerebellum as shown by fMRI. Hum Brain Mapp. 2002 Oct;17(2):100-15.</ref>


==== Procedura sperimentale ====
==== Experimental procedure ====
L’esperimento consistette nel monitorare simultaneamente la presenza del blink relex ( R1 e R2) e l’attività EMG del massetere sinistro con elettrodo ad ago al momento dell’infusione di Propofol a dosi di <math>2 mg/kg </math> che determinò una lieve dissociazione-vigile e con occhi aperti. In questo modo si può affermare, con buona approssimazione, che il farmaco lasciò libere le funzioni mesencefalico-bulbari.  
The experiment consisted in simultaneously monitoring the presence of the blink relex (R1 and R2) and the EMG activity of the left masseter with a needle electrode at the time of Propofol infusion at doses of <math>2 mg/kg </math> which determined a slight dissociation - alert and with eyes open . In this way it can be stated, with a good approximation, that the drug released the mesencephalic-bulbar functions.  


Le risposte EMG (fig. 6) furono le seguenti: al momento dell’introduzione del farmaco si assiste ad una breve perdita cosciente del controllo corticale, che gli anestesisti conoscono clinicamente come ipertono transitorio e che elettrofisiologicamente ha determina un aumento del tono muscolare. In figura 6 (fase 1: prime due traccia superiori) si può osservare l’ aumento della frequenza di scarica delle unità motorie che vanno da <math>\approxeq 23Hz </math>, prima dell’esperimento (fig.1B), a  <math>\approxeq 75Hz </math> della fase 1.( Fig. 6, traccia 1 e 2 superiore)  
The EMG responses (fig. 6) were as follows: upon introduction of the drug there was a brief conscious loss of cortical control, which anesthetists know clinically as transient hypertonicity and which electrophysiologically causes an increase in muscle tone. In figure 6 (phase 1: first two upper traces) we can observe the increase in the discharge frequency of the motor units ranging from <math>\approxeq 23Hz </math>, before the experiment (fig.1B), to <math>\approxeq 75Hz </math>  of phase 1.( Fig. 6, trace 1 and 2 above)


Dopo  <math>\approxeq 5 sec </math> il farmaco sembra essersi distribuito alle aree corticali-sottocorticali e questo effetto si manifesta elettrofisiologicamente con un rallentamento della frequenza di scarica EMG (fig. 6 traccia 3 e 4 partendo dall'alto). Dopo altri <math>\approxeq 6 sec </math>  la saturazione delle aree corticali e, presumibilmente, sottocorticali è completa e si assiste ad una assenza totale dell’attività EMG sul massetere sinistro.(fig. 6 traccia 5,6 e 7 partendo dall'alto) Infine il farmaco viene metabolizzato dopo  <math>\approxeq 6 sec </math> dal silenzio elettrico e contestualmente riappare la costante attività tonica EMG a <math>\approxeq 23Hz </math> (fig.6 traccia 8-14).  
After <math>\approxeq 5 sec </math>  the drug seems to have distributed to the cortical-subcortical areas and this effect is manifested electrophysiologically with a slowing down of the EMG discharge frequency (fig. 6 traces 3 and 4 starting from the top). After others <math>\approxeq 6 sec </math>  the saturation of the cortical and, presumably, subcortical areas is complete and there is a total absence of EMG activity on the left masseter. (fig. 6 traces 5,6 and 7 starting from the top) Finally the drug is metabolised after<math>\approxeq 6 sec </math> from the electric silence and contextually the constant EMG tonic activity reappears at <math>\approxeq 23Hz </math> (fig.6 trace 8-14).{{q2|The most interesting data was in phase 3 in which there is the total absence of MUAP while the blink reflex was still evokeable with its R1 and R2 components. This would explain the cortical and/or subcortical pacemaker but would not involve brainstem structures.|}}


Il dato più interessante è stato nella fase 3 in cui vi è l’assenza totale di MUAP mentre il blink reflex era ancora evocabile con le sue componenti R1 e R2. Questo spiegherebbe il pacemaker corticale e/o sottocorticale ma non coinvolgerebbe le strutture troncoencefaliche.


[[File:EMG Propofol.jpeg|center|thumb|600x600px|'''Figure 6:''' EMG result of the experimental procedures. For better understanding follow text]]


[[File:EMG Propofol.jpeg|center|thumb|600x600px|'''Figura 6:''' Risultato EMG delle procedure sperimentali. Per una migliore comprensione segui testo]]
=== Conclusions ===


=== Conclusione ===
==== Experimental conclusion ====
The EMG activity present in the examined subject cannot be defined as "Spontaneous activity" because it does not show characteristics of organic damage to the muscle fibers and/or the second motor neuron. If it were muscle fiber damage, the EMG activity would have remained even after <math>2 mg/kg </math> administration of propofol. Indeed, it was observed that doses of <math>2 mg/kg </math> propofol failed to reverse the fasciculations induced by administration of 1 mg/kg of succinylcholine.<ref>Kararmaz A. Kaya S, TurhanogluS, Ozyilmaz A.: Effects of high-dose propofol on succinylcholine-induced fasciculations and myalgia. Acta Anaesthesiol Scand 2003; 47:180-184</ref> The EMG activity present in the subject cannot be described as "Incapacity to relax" because the term is too generic to refer to conditions of psychic disturbances and dystonic disorders. In oromandibular dystonias, in fact, there are phases of EMG silence when the patient is asked to deviate the jaw to one side in an attempt to stretch the muscle involved. This effect is determined by an additional input from the muscle proprioceptive fibers.


==== Conclusione sperimentale ====
The disappearance of the EMG activity at doses of <math>2 mg/kg </math> propofol, a dose capable of interfering with the cortical, subcortical and striatal systems while maintaining the brainstem and pontobulbar functions intact, demonstrates that the pacemaker is at a higher level of the brainstem.
L’attività EMG presente nel soggetto esaminato non può essere definita  “''Attività spontanea''”  perché non presenta caratteristiche di danno organico delle fibre muscolari e/o del II motoneurone.  Se si trattasse di danno delle fibre muscolari l’attività EMG sarebbe rimasta anche dopo somministrazione di <math>2 mg/kg </math> di propofol. E’ stato osservato, infatti, che dosi di propofol di <math>2 mg/kg </math> fallirono nel annullare le fascicolazioni indotte da somministrazione di 1mg/kg di succinilcolina.<ref>Kararmaz A. Kaya S, TurhanogluS, Ozyilmaz A.: Effects of high-dose propofol on succinylcholine-induced fasciculations and myalgia. Acta Anaesthesiol Scand 2003; 47:180-184</ref> L’attività EMG presente nel soggetto non può essere descritta come “Incacacità di rilassamento” perché termine troppo generico sia riferito a condizioni di turbe psichiche che a disturbi distonici. Nelle distonie oromandibolari si assiste,infatti, a fasi di silenzio EMG quando si chiede al paziente di deviare la mandibola su un lato nel tentativo di stirare il muscolo coinvolto. Questo effetto è determinato da un aggiuntivo input delle fibre propriocettive muscolari.


La scomparsa dell’attività EMG a dosi di <math>2 mg/kg </math> di propofol, dose capace di interferire con i sistemi corticali, sottocorticali e striatali mantenendo integre le funzioni troncoencefaliche e ponto-bulbari, dimostra che il pacemaker è ad un livello superiore del tronco encefalico.
The recorded EMG activity can finally be defined as "involuntary EMG activity" and responds to a pacemaker of central origin. This continuous EMG activity would determine, in the long run, damage to the myofibrils and myoglobin, an algogenic substance, would be the terminal cause of the pain reported by the patient.


L’attività EMG registrata si può finalmente  definire “Attività EMG involontaria" e risponde ad un pacemaker di origine centrale. Questa continua attività EMG  determinerebbe, a lungo andare, un danno delle miofibrille e la mioglobina, sostanza algogena, sarebbe la causa terminale del dolore riferito dalla paziente.  
Therefore, the patient was more likely to be affected by "Focal oromandibular dystonia" than by "Tempormandibular Disorders" accompanied by phenomena of bruxism even during the day. Pharmacological evidence, in fact, suggests that the central dopaminergic system may be involved in the pathogenesis of the craniocervical dystonia and bruxism.<ref>Watt MW, Tan EK, Jankovic J.: Bruxism and Cranial cervical dystonia: Is there a relationship? Behavioural Sciences. 1999; 17: 196-2011)   </ref> Lobbezo, in fact, demonstrated by PET imaging an abnormal lateral distribution in striatal D2-binding receptors in bruxism and craniocervical dystonias.<ref>Lobbezzo F, Soucy JP, Montplaisir JY, Lavigne GJ.: Striatal D2 receptor binding in sleep bruxism: a controlled study with iodine 123 –iodobenzamide and single photon emission computer tomography. J Dent. Res. 1996 : 75 ; 1804-1810</ref> The fact that peripheral trauma may cause dystonia suggests that the sensory system may be important for the pathogenesis of focal dystonia and, in any case, it can interact only if the patient is genetically predisposed to develop a post-traumatic dystonia.<ref>Chuldler EH, Dong WK.: The role of basal ganglia in nociception and pain Pain 1995; 60: 3-38</ref> Using PET, thermal pain stimulation of the hand and the intradermal injection of capsaicin can determine an increase in the blood flow in the contralateral putamen and globus pallidus when compared with painless thermal stimuli.<ref>Jones AK, Brown WD, Friston KJ, Qi LY,Frackowiak RS.: Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond B Biol Sci 1991; 244: 39-44</ref><ref>Iadarola MJ, Berman KF, Byas-Smith M, Gracely RH, Max M, Seffiro T. et all.: Positron emission tomography (PET) studies of pain and allodynia in normal and patients with chronic neuropathic pain. Soc Neurosci Abstr 1993; 19: 1074</ref> Furthermore, the expression of the genes for prodynorphin, c-Fos and c-Jun is altered at the spinal and midbrain levels after painful stimuli.<ref>Bullitt E.: Introduction of c-Foslike protein whitin the lumbar spinal cord and thalamus of the rat following peripheral stimulation. Brain Res 1989; 493: 391-7 </ref> In dystonics, using PET, peak blood flow in response to hand vibration was significantly reduced in both primary sensory and supplementary motor cortices when compared with normal subjects.<ref>Tempel LW, Perlmutter JS.: Abnormal cortical responses in patients with writer’s cramp Neurology 1993; 43: 2252-7</ref> Dystonic manifestations in the patients were easily elicited by the "tonic vibration reflex" but were markedly attenuated by lidocaine blockade of the muscle spindles.<ref>Kaji R, Rothwell JC, Katayama M, Ikeda T, Kubori T, Kohara N, Mezaki T, Shibasaki H, Kimura J.: Tonic vibration reflex and muscle afferent block in writer's cramp. Ann Neurol. 1995 Aug;38(2):155-62</ref>


La paziente, dunque, poteva essere affetta con più ampia probabilità da “Distonia focale oromandibolare" più che da "Disordini Tempormandibolari" accompagnata da fenomeni di bruxismo anche diurno. Evidenze farmacologiche, infatti, suggeriscono che il sistema dopaminergico centrale può essere implicato nella patogenesi della distonia cranio cervicale e nel bruxismo.<ref>Watt MW, Tan EK, Jankovic J.: Bruxism and Cranial cervical dystonia: Is there a relationship? Behavioural Sciences. 1999; 17: 196-2011)   </ref> Lobbezo, infatti, attraverso la PET  ha dimostrato una anormale distribuzione di lato nei recettori D2 striatali leganti nel bruxismo e nelle distonie cranio cervicali.<ref>Lobbezzo F, Soucy JP, Montplaisir JY, Lavigne GJ.: Striatal D2 receptor binding in sleep bruxism: a controlled study with iodine 123 –iodobenzamide and single photon emission computer tomography. J Dent. Res. 1996 : 75 ; 1804-1810</ref> Il fatto che il trauma periferico possa causare distonia suggerisce che il sistema sensoriale possa essere importante per la patogenesi della distonia focale e, comunque, esso può interagire solo se il paziente è geneticamente predisposto a sviluppare una distonia post-traumatica.<ref>Chuldler EH, Dong WK.: The role of basal ganglia in nociception and pain Pain 1995; 60: 3-38</ref> Usando la PET la stimolazione dolorosa termica della mano e l’iniezione intradermica di capsicina possono determina un aumento del flusso ematico nel putamen controlaterale e del globus pallido quando comparati con stimoli non dolorosi termici.<ref>Jones AK, Brown WD, Friston KJ, Qi LY,Frackowiak RS.: Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc R Soc Lond B Biol Sci 1991; 244: 39-44</ref><ref>Iadarola MJ, Berman KF, Byas-Smith M, Gracely RH, Max M, Seffiro T. et all.: Positron emission tomography (PET) studies of pain and allodynia in normal and patients with chronic neuropathic pain. Soc Neurosci Abstr 1993; 19: 1074</ref> Inoltre l’espressione dei geni per la prodinorfina, c-Fos e c-Jun è alterata a livello spinale e mesencefalico dopo stimoli dolorosi.<ref>Bullitt E.: Introduction of c-Foslike protein whitin the lumbar spinal cord and thalamus of the rat following peripheral stimulation. Brain Res 1989; 493: 391-7 </ref> Nei distonici, impiegando i PET, il picco di flusso sanguigno in risposta alla vibrazione della mano fu significativamente ridotto sia nella corteccia  sensoriale primaria che nella motoria supplementare quando comparata con i soggetti normali.<ref>Tempel LW, Perlmutter JS.: Abnormal cortical responses in patients with writer’s cramp Neurology 1993; 43: 2252-7</ref> Manifestazioni distoniche nei pazienti furono facilmente provocati dal “riflesso tonico di vibrazione” ma furono marcatamente attenuati dal blocco con lidocaina dei fusi neuromuscolari.<ref>Kaji R, Rothwell JC, Katayama M, Ikeda T, Kubori T, Kohara N, Mezaki T, Shibasaki H, Kimura J.: Tonic vibration reflex and muscle afferent block in writer's cramp. Ann Neurol. 1995 Aug;38(2):155-62</ref>
These authors suggested three mechanisms that may explain the increased sensitivity to vibration: the loss of the normal inhibition of the Ia afferents, a "central" alteration, and an alteration of the excitability of the neuromuscular spindles resulting from an overactivity of motor neurons. Loss of normal inhibition was also found in other experiments; in dystonics, in fact, there is a rapid curve of the recovery cycle of the blink reflex and of the H wave.<ref>Tolosa E, Montserrat L, Bayes A.: Blink reflex studies in focal dystonias: enhanced excitability of brainstem interneurons in cranial dystonia and spasmodic torticollis. Mov Disord. 1988;3(1):61-9</ref>


Questi autori suggerirono tre meccanismi che possono spiegare l’aumentata sensibilità alla vibrazione: la perdita della normale inibizione delle afferenze Ia, un’alterazione “centrale” ed un’alterazione dell’eccitabilità dei fusi neuromuscolari risultante da una iperattività dei motoneuroni <math>\gamma</math>. La perdita della normale inibizione fu anche trovata in altri esperimenti; nei distonici, infatti, è presente una rapida curva del ciclo di recupero del blink reflex e dell’onda H.<ref>Tolosa E, Montserrat L, Bayes A.: Blink reflex studies in focal dystonias: enhanced excitability of brainstem interneurons in cranial dystonia and spasmodic torticollis. Mov Disord. 1988;3(1):61-9</ref>
==== Pharmacological treatment ====
The patient responded positively to the administration of "SIRDALUD" at doses of 4 mg three times a day more than to the administration of diazepam. Tizanidine (Sirdalud) is in fact a molecule that acts centrally as a myotonolitic agent and is pharmacologically and chemically different from diazepam and baclofen. This is a potent inhibitor of <math>\alpha</math> e <math>\gamma</math> motoneurons for stiffness experimentally induced in mice and polysynaptic activity in cats. In the decorticated or decerebrated cat, tizanidine preferentially inhibits the tonic component of the reflex activity. The actions of tizanidine result from its agonist activity at noradrenergic subunit receptors and may also involve inhibition of the release of excitatory amino acids from spinal interneurons (EAAs).<ref>Coward DM: The drug treatment of spasticity. Sandoz 1997</ref> The action on muscle tone, the lower sedative effect compared to diazepam and baclofen and the resulting lower muscle weakness are the characteristics that led to the choice of this drug over the others (EAAs)


==== Trattamento farmacologico ====
==== Clinical conclusions ====
La paziente rispose positivamente alla somministrazione di “SIRDALUD“ a dosi di 4 mg tre volte al dì più che alla somministrazione di diazepam.                                                                      La tizanidina ( Sirdalud) è infatti una molecola che agisce centralmente come agente miotonolitico ed è farmacologicamente e chimicamente diverso dal diazepam e baclofen. Questo è un potente inibitore della  e   rigidità indotta sperimentalmente sul topo e dell’attività polisinaptica nel gatto. Nel gatto decorticato o decerebrato la tizanidina inibisce preferenzialmente la componente tonica dell’attività riflessa. Le azioni della tizanidina derivano dalla propria attività agonista sui recettori noradrenergici delle sub-unità <math>\alpha_2</math> e possono coinvolgere anche l’inibizione del rilascio degli aminoacidi eccitatori dagli interneuroni spinali (EAA).<ref>Coward DM: The drug treatment of spasticity. Sandoz 1997</ref>  L’azione sul tono muscolare, il minore effetto sedativo rispetto al diazepam ed al baclofen e  la minore debolezza muscolare che ne deriva, sono le caratteristiche che hanno indotto la scelta di questo farmaco rispetto agli altri (EAA)


==== Conclusioni Cliniche ====
To reach a clear and meaningful clinical conclusion we need to ask ourselves the following question:


Per giungere ad una conclusione clinica chiara e significativa dobbiamo porci la seguente domanda:
Are the Temporomandibular Disorders causing a functional alteration of the trigeminal Central Nervous system or could this clinical manifestation represent a variant of a benign acute cranial polyneuritis, or a more complex clinical state?


Sono i Disordini Temporomandibolari a causare una alterazione funzionale del sistema Nervoso Centrale trigeminale oppure questa manifestazione clinica potrebbe rappresentare variante di una polineurite cranica acuta benigna, oppure uno stato clinico più complesso?
An adequate answer to this question was given by a study by Adour KK<ref>Adour KK. Acute temporomandibular joint pain-dysfunction syndrome: neuro-otologic and electromyographic study. Am J Otolaryngol. 1981 May;2(2):114-22. doi: 10.1016/s0196-0709(81)80028-2.PMID: 7270801</ref> through a prospective study using neuro-otological examination and electromyography. Seven consecutive patients with cardinal symptoms of temporomandibular joint pain syndrome (pain, tenderness, clicking, and limitation of jaw movement) were evaluated within one week of the onset of their acute symptoms. Three others with chronic symptoms were tested for comparison with acute cases. All seven patients with the acute condition had asymptomatic hypoesthesia of all three divisions of the trigeminal nerve and decreased action potential of the volitional muscles in the masseter and temporal muscles. At the end of three weeks the hypesthesia resolved in all seven patients and the muscle action potential returned to normal in six of the seven. EMG testing of the single patient with persistent reduced muscle action potentials and three patients with chronic symptoms showed fibrillation, reduced polyphasic regeneration potentials, and spontaneous fasciculations with clinical atrophy and spasm of the affected masseter and temporal muscles. Other acute cranial nerve findings included unilateral glossopharyngeal and second cervical nerve hypoesthesia, motor paralysis of the superior laryngeal branch of the vagus nerve, and increased facial nerve latency. These findings suggest a neuromuscular, rather than a psychophysiological, organic cause of temporomandibular joint pain syndrome.


Una adeguata risposta a questo quesito è stata data da uno studio di Adour KK <ref>Adour KK. Acute temporomandibular joint pain-dysfunction syndrome: neuro-otologic and electromyographic study. Am J Otolaryngol. 1981 May;2(2):114-22. doi: 10.1016/s0196-0709(81)80028-2.PMID: 7270801</ref>attraverso uno studio prospettico utilizzando l'esame neuro-otologico e l'elettromiografia. Sette pazienti consecutivi con sintomi cardinali della sindrome da disfunzione dolorosa dell'articolazione temporo-mandibolare (dolore, dolorabilità, clic e limitazione del movimento della mandibola) sono stati esaminati entro una settimana dall'insorgenza dei loro sintomi acuti. Altri tre con sintomi cronici sono stati testati per il confronto con i casi acuti. Tutti e sette i pazienti con la condizione acuta presentavano ipoestesia asintomatica di tutte e tre le divisioni del nervo trigemino e una riduzione del potenziale d'azione dei muscoli volitivi nei muscoli masseteri e temporali. Alla fine di tre settimane l'ipestesia si è risolta in tutti e sette i pazienti e il potenziale d'azione muscolare è tornato alla normalità in sei dei sette. I test elettromiografici del singolo paziente con potenziali d'azione muscolari ridotti persistenti e tre pazienti con sintomi cronici hanno mostrato fibrillazione, ridotti potenziali di rigenerazione polifasica e fascicolazioni spontanee con atrofia clinica e spasmo dei muscoli masseteri e temporali interessati. Altri risultati acuti del nervo cranico includevano ipoestesia unilaterale del glossofaringeo e del secondo nervo cervicale, paralisi motoria del ramo laringeo superiore del nervo vago e aumento della latenza del nervo facciale. Questi risultati suggeriscono una causa organica neuromuscolare, piuttosto che psicofisiologica, della sindrome da disfunzione dolorosa dell'articolazione temporo-mandibolare.
Contrary to this assertion that sees an organic neuromotor disturbance at the basis of a clinical situation of TMDs, there is the opinion that the influence of the unilateral posterior crossbite on the variations of spontaneous muscle activity in the mandibular rest position and in maximum voluntary contraction is significant and confirmed by Woźniak K et al.<ref name=":0">Woźniak K, Szyszka-Sommerfeld L, Lichota D. The electrical activity of the temporal and masseter muscles in patients with TMD and unilateral posterior crossbite. Biomed Res Int. 2015;2015:259372. doi: 10.1155/2015/259372. Epub 2015 Mar 26.PMID: 25883948 </ref>  


Contrariamente a questa asserzione che vede un disturbo organico neuromotorio alla base di una situazione clinica di TMDs c'è la opinione che l'influenza del crossbite posteriore unilaterale sulle variazioni dell'attività muscolare spontanea nella posizione di riposo mandibolare e nella massima contrazione volontaria sia significativa e confermata da Woźniak K et al.<ref name=":0">Woźniak K, Szyszka-Sommerfeld L, Lichota D. The electrical activity of the temporal and masseter muscles in patients with TMD and unilateral posterior crossbite. Biomed Res Int. 2015;2015:259372. doi: 10.1155/2015/259372. Epub 2015 Mar 26.PMID: 25883948 </ref> 
Having already clarified, albeit not in depth, the terminological, clinical and scientific difficulty in understanding phenomena that represent an alteration of the trigeminal Central Nervous System in EMG activity at rest, we can only suggest more attention in planning experiments of this type. For example Woźniak K et al.<ref name=":0" /> reaches these conclusions by analyzing the asymmetry between sides of the EMG activity at rest and at maximum will to contract (MVC) and the algorithm used is the following:<math>As=\frac{\textstyle \sum_{i=1}^N |R_i-L_i|\displaystyle}{\textstyle \sum_{i=1}^N |R_i+L_i|\displaystyle}
 
\cdot100</math>
Avendo già chiarito anche se in modo non approfondito la difficoltà terminologica, clinica e scientifica nella comprensione di fenomeni che rappresentano una alterazione del Sistema Nervoso Centrale trigeminale nell'attività EMG a riposo possiamo solo suggerire più attenzione nel progettare esperimenti di questo tipo. Per esempio Woźniak K et al.<ref name=":0" /> giunge a tali conclusioni analizzando la asimmetria tra lati dell'attività EMG a riposo ed a massima volonta di contrazione (MVC) e l'algoritmo impiegato è il seguente:  


<math>As=\frac{\textstyle \sum_{i=1}^N |R_i-L_i|\displaystyle}{\textstyle \sum_{i=1}^N |R_i+L_i|\displaystyle}
\cdot100</math>


ma non si è tenuto conto se queste asimmetrie, principalmente evidenti al numeratore siano realmente correlate ad una simmetria organica delle radici motorie trigeminali. Queste conclusioni perciò, sarebbero potute divenire esponenzialmente significative se correlate ai dati in uscita dall'esecuzione dei Potenziali Evocati motori trigeminali bilaterali <sub>b</sub>Root-MEPs messi appunto dal nostro gruppo.  
but we did not take into account whether these asymmetries, mainly evident in the numerator, are really related to an organic symmetry of the trigeminal motor roots. Therefore, these conclusions could have become exponentially significant if correlated to the output data from the execution of the bilateral trigeminal motor Evoked Potentials <sub>b</sub>Root-MEPs performed by our group.  


Questo avrebbe avuto un esponenziale significato clinico perchè avrebbe confermato una correlazione tra la asimmetria funzionale ( e non organica) tra il crossbite e le attività elettriche neuromotorie. {{Bib}}
This would have had an exponential clinical significance because it would have confirmed a correlation between the functional (and non-organic) asymmetry between the crossbite and the neuromotor electrical activities.{{Bib}}
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,784

edits