Difference between revisions of "Fuzzy logic language/it"
(Created page with "Rappresentato dal simbolo<math>\subset</math> (is content), - (è contenuto), - ad esempio l'intero <math>A</math> è contenuto all'interno dell'insieme più grande <math>U</math>, <math>A \subset U</math> ((in questo caso si dice che <math>A</math> è un subset di <math>U</math>)") |
|||
Line 104: | Line 104: | ||
*Non appartenenza: rappresentato dal simbolo <math>\notin </math> (Non appartiene) | *Non appartenenza: rappresentato dal simbolo <math>\notin </math> (Non appartiene) | ||
*Inclusione: <span class="mw-translate-fuzzy">Rappresentato dal simbolo<math>\subset</math> (is content), - (è contenuto), - ad esempio l'intero <math>A</math> è contenuto all'interno dell'insieme più grande <math>U</math>, <math>A \subset U</math> ((in questo caso si dice che <math>A</math> è un subset di <math>U</math>)</span> | *Inclusione: <span class="mw-translate-fuzzy">Rappresentato dal simbolo<math>\subset</math> (is content), - (è contenuto), - ad esempio l'intero <math>A</math> è contenuto all'interno dell'insieme più grande <math>U</math>, <math>A \subset U</math> ((in questo caso si dice che <math>A</math> è un subset di <math>U</math>)</span> | ||
*Quantificatore universale, | *Quantificatore universale, che è indicato dal simbolo <math>\forall</math> (per ciascuno) | ||
*Dimostrazione, <span lang="en" dir="ltr" class="mw-content-ltr">which is indicated by the symbol <math>\mid</math> (such that)</span> | *Dimostrazione, <span lang="en" dir="ltr" class="mw-content-ltr">which is indicated by the symbol <math>\mid</math> (such that)</span> | ||
Revision as of 16:51, 10 March 2022
In questo capitolo parleremo della logica fuzzy. Si chiama fuzzy perché è caratterizzata da una gradualità: ad un oggetto si può attribuire una qualità che può avere vari gradi di verità.
Nella prima parte di questo capitolo, verrà discusso concettualmente il significato della verità graduata, mentre nella seconda parte, ci addentreremo nel formalismo matematico introducendo la funzione di appartenenza : l'elemento che ci permette di sintetizzare matematicamente le sfumature di questa logica del linguaggio. È stato possibile dimostrare che con il ragionamento 'fuzzy', a differenza delle precedenti logiche del linguaggio, le diagnosi mostrano meno incertezza. Nonostante questo, però, si sente ancora la necessità di raffinare ulteriormente il metodo linguistico e di arricchirlo con altre 'logiche'..
Introduzione
Siamo arrivati a questo punto perché, come colleghi, ci troviamo molto spesso di fronte a responsabilità e decisioni che sono molto difficili da prendere e entrano in gioco questioni come la coscienza, intelligenza ed umiltà. In tale situazione, però, ci troviamo di fronte a due ostacoli ugualmente difficili da gestire: quello di una (Knowledge Basis, Conoscenza di base), come l'abbiamo discussa nel capitolo 'Logica del linguaggio probabilistico', limitata nel tempo che codifichiamo in , e una limitata nel contesto specifico (). Questi due parametri dell'epistemologia caratterizzano l'epoca scientifica in cui viviamo. Inoltre, sia la che la sono variabili dipendenti della nostra filogenesi e, in particolare, della nostra plasticità concettuale e attitudine al cambiamento.[1]
(I'll give you a practical example)
Quante ricerche sono state prodotte sull'argomento "logica fuzzy"?
Pubmed risponde con 2862 articoli negli ultimi 10 anni[2][3], così che possiamo dire che il nostro è attuale ed è sufficientemente aggiornato. Tuttavia, se volessimo focalizzare l'attenzione su un argomento specifico come 'Disturbi Temporomandibolari', il database risponderà con ben 2.235 articoli. [4] Quindi, se volessimo controllare un altro argomento come 'Orofacial Pain', Pubmed ci dà 1.986 articoli.[5] Questo significa che il per questi tre argomenti negli ultimi 10 anni è stato sufficientemente aggiornato.
Se, ora, volessimo verificare l'interconnessione tra gli argomenti, noteremo che nei contesti sarà il seguente:
- 'Disturbi temporomandibolari E dolore orofacciale' 9 articoli negli ultimi 10 anni[6]
- 'Disturbi temporomandibolari E Dolore orofacciale E Logica fuzzy' 0 articoli negli ultimi 10 anni[7]
L'esempio indica che il è relativamente aggiornato individualmente per i tre argomenti, mentre diminuisce drasticamente quando gli argomenti tra i contesti sono uniti e specificamente a 9 articoli per il punto 1 e anche a 0 articoli per il punto 2. Perciò, la è una variabile dipendente dal tempo mentre la è una variabile cognitiva dipendente dalla nostra attitudine al progresso della scienza, come già accennato, tra l'altro, nel capitolo "Introduzione".
(Aspetta e vedrai)
Abbiamo concluso il capitolo precedente affermando che la logica di un linguaggio classico e successivamente la logica probabilistica ci hanno aiutato molto nel progresso della scienza medica e della diagnostica, ma implicitamente portano in sé i limiti della propria logica di linguaggio, che limita la visione dell'universo biologico.. Abbiamo anche verificato che con la logica di un linguaggio classico, per così dire aristotelico, la sintassi logica che ne deriva nella diagnostica della nostra Mary Poppins limita, di fatto, la conclusione clinica..
(vedi capitolo Classical Language's Logic),
afferma che: "qualsiasi paziente normale che è positivo all'esame radiografico della ATM soffre di Disordini Temporomandibolari (DTM), come diretta conseguenza avendo Mary Poppins un referto positivo radiologico positiva della ATM (ed essendo anche una paziente "normale") , allora anche Mary Poppins è affetta da DTM
La limitazione del percorso logico seguito ci ha portato a intraprendere un percorso alternativo, in cui si evita la bivalenza o la natura binaria della logica linguistica classica e si segue un modello probabilistico. Il collega dentista, infatti, ha cambiato il vocabolario e ha preferito una conclusione come:
e cioè che la nostra Mary Poppins è affetta al 95% da DTM poiché ha una degenerazione dell'articolazione temporomandibolare sostenuta dalla positività dei dati in un campione di popolazione . Tuttavia, lo abbiamo anche trovato nel processo di costruzione della logica probabilistica (Analysandum ) che ci ha permesso di formulare le suddette conclusioni diagnostiche differenziali e di scegliere quella più plausibile, c'è un elemento cruciale nell'insieme Analysand rappresentato dal termine che indica, nello specifico, una 'Base di conoscenza' del contesto su cui si costruisce la logica del linguaggio probabilistico.
Abbiamo quindi concluso che forse il collega dentista avrebbe dovuto venire a conoscenza della propria 'Incertezza Soggettiva' (colpita da DTM o Dolore Orofacciale?) nOP? e "Incertezza oggettiva" (probabilmente più influenzata da DTM o Dolore orofacciale?nOP?).
Perché siamo arrivati a queste conclusioni critiche?
Per una forma ampiamente condivisa di rappresentazione della realtà, sostenuta dalla testimonianza di figure autorevoli che ne confermano la criticità. Questo ha dato origine a una visione della realtà che, a prima vista, sembrerebbe inadatta al linguaggio medico; infatti, espressioni come "circa 2" o "moderatamente" possono suscitare legittime perplessità e sembrare un anacronistico ritorno a concetti pre-scientifici. Al contrario, però, l'uso dei numeri fuzzy o delle asserzioni permette di trattare i dati scientifici in contesti in cui non si può parlare di 'probabilità' ma solo di 'possibilità'.[8]
Verità fuzzy
Nell'ambizioso tentativo di tradurre in matematica la razionalità umana, si è pensato a metà del XX secolo di espandere il concetto di logica classica formulando la logica fuzzy. La logica fuzzy riguarda le proprietà che potremmo chiamare 'gradualità', cioè che possono essere attribuite a un oggetto con gradi diversi. Esempi sono le proprietà 'essere malato', 'avere dolore', 'essere alto', 'essere giovane', e così via.
Matematicamente, la logica fuzzy ci permette di attribuire a ciascuna proposizione un grado di verità tra and . L'esempio più classico per spiegare questo concetto è quello dell'età: si può dire che un neonato ha un 'grado di giovinezza' pari a , un diciottenne pari a, un sessantenne pari a, e così via.
Nel contesto della logica classica, invece, le affermazioni:
- un bambino di dieci anni è giovane
- un trentenne è giovane
sono entrambe vere. Tuttavia, nel caso della logica classica (che ammette solo i due dati vero o falso), questo significherebbe che il bambino e il trentenne sono ugualmente giovani. Il che è ovviamente sbagliato.
L'importanza e il fascino della logica fuzzy derivano dal fatto che è in grado di tradurre l'incertezza insita in alcuni dati del linguaggio umano in un formalismo matematico, codificando concetti 'elastici' (come quasi alto, abbastanza buono, ecc.), al fine di renderli comprensibili e gestibili dai computer.
Teoria degli insiemi
Come accennato nel capitolo precedente, il concetto base della logica fuzzy è quello della multivalenza, cioè, in termini di teoria degli insiemi, della possibilità che un oggetto possa appartenere a un insieme anche solo parzialmente e, quindi, anche a più insiemi con gradi diversi.. Ricordiamo fin dall'inizio gli elementi di base della teoria degli insiemi ordinari. Come si vedrà, in essi appaiono le espressioni formali dei principi della logica aristotelica, ricordati nel capitolo precedente..
Quantificatori
- Appartenenza: rappresentato dal simbolo (appartenenza), - per esempio il numero 13 appartiene all'insieme dei numeri dispari
- Non appartenenza: rappresentato dal simbolo (Non appartiene)
- Inclusione: Rappresentato dal simbolo (is content), - (è contenuto), - ad esempio l'intero è contenuto all'interno dell'insieme più grande , ((in questo caso si dice che è un subset di )
- Quantificatore universale, che è indicato dal simbolo (per ciascuno)
- Dimostrazione, which is indicated by the symbol (such that)
Set operators
Given the whole universe we indicate with its generic element so that ; then, we consider two subsets and internal to cosicché e
The theory of fuzzy language logic is an extension of the classical theory of sets in which, however, the principles of non-contradiction and the excluded third are not valid. Remember that in classical logic, given the set and its complementary , the principle of non-contradiction states that if an element belongs to the whole it cannot at the same time also belong to its complementary ; according to the principle of the excluded third, however, the union of a whole and its complementary constitutes the complete universe .
In other words, if any element does not belong to the whole, it must necessarily belong to its complementary.
Fuzzy set and membership function
We choose - as a formalism - to represent a fuzzy set with the 'tilde':. A fuzzy set is a set where the elements have a 'degree' of belonging (consistent with fuzzy logic): some can be included in the set at 100%, others in lower percentages.
To mathematically represent this degree of belonging is the function called 'Membership Function'. The function is a continuous function defined in the interval where it is:
- if is totally contained in (these points are called 'nucleus', they indicate plausible predicate values).
- if is not contained in
- if is partially contained in (these points are called 'support', they indicate the possible predicate values).
The graphical representation of the function it can be varied; from those with linear lines (triangular, trapezoidal) to those in the shape of bells or 'S' (sigmoidal) as depicted in Figure 1, which contains the whole graphic concept of the function of belonging.[9][10]
The support set of a fuzzy set is defined as the zone in which the degree of membership results ; on the other hand, the core is defined as the area in which the degree of belonging assumes value
The 'Support set' represents the values of the predicate deemed possible, while the 'core' represents those deemed more plausible.
If represented a set in the ordinary sense of the term or classical language logic previously described, its membership function could assume only the values or , depending on whether the element whether or not it belongs to the whole, as considered. Figure 2 shows a graphic representation of the crisp (rigidly defined) or fuzzy concept of membership, which clearly recalls Smuts's considerations.[11]
Let us go back to the specific case of our Mary Poppins, in which we see a discrepancy between the assertions of the dentist and the neurologist and we look for a comparison between classical logic and fuzzy logic:
Figure 2: Let us imagine the Science Universe in which there are two parallel worlds or contexts, and .
In the scientific context, the so-called ‘crisp’, and we have converted into the logic of Classic Language, in which the physician has an absolute scientific background information with a clear dividing line that we have named .
In another scientific context called ‘fuzzy logic’, and in which there is a union between the subset in that we can go so far as to say: union between .
We will remarkably notice the following deductions:
- Classical Logic in the Dental Context in which only a logical process that gives as results it will be possible, or being the range of data reduced to basic knowledge in the set . This means that outside the dental world there is a void and that term of set theory, it is written precisely and which is synonymous with a high range of:
- Fuzzy logic in a dental context in which they are represented beyond the basic knowledge of the dental context also those partially acquired from the neurophysiological world will have the prerogative to return a result and a result because of basic knowledge which at this point is represented by the union of dental and neurological contexts. The result of this scientific-clinical implementation of dentistry would allow a:«Reduction of differential diagnostic error»
Final considerations
Topics that could distract the reader’s attention—was, in fact, essential for demonstrating the message. Normally, in fact, when any more or less brilliant mind allows itself to throw a stone into the pond of Science, a shockwave is generated, typical of the period of Kuhn’s extraordinary science, against which most of the members of the international scientific community row. With good faith, we can say that this phenomenon—as regards the topics we are addressing here—is well represented in the premise at the beginning of the chapter.
In these chapters, in fact, a fundamental topic for science has been approached: the re-evaluation, the specific weight that has always been given to , awareness of scientific / clinical contexts , having undertaken a more elastic path of Fuzzy Logic than the Classical one, realizing the extreme importance of and ultimately the union of contexts to increase its diagnostic capacity.[12][13]
In the next chapter we will be ready to undertake an equally fascinating path that will leads us to the context of a System Language logic and will allow us to deepen our knowledge no longer only in clinical semeiotics but in the understanding of system functions as recently it is approaching in neuromotor disciplines for Parkinson's disease.[14] In Masticationpedia, of course, we will report the topic 'System Inference' in the field of the masticatory system as we could read in the next chapter entitled 'System logic'.
- ↑ Takeuchi S, Okuda S, «Knowledge base toward understanding actionable alterations and realizing precision oncology», in Int J Clin Oncol, 2019».
PMID:30542800 - PMCID:PMC6373253
DOI:10.1007/s10147-018-1378-0
This is an Open Access resource! - ↑ Fuzzy logic on Pubmed
- ↑ Tutte le statistiche raccolte a seguito di visite al sito Pubmed (https://pubmed.ncbi.nlm.nih.gov/). Ultimo controllo: Dicembre 2020.
- ↑ Disturbi temporomandibolari in Pubmed
- ↑ Dolore orofacciale in Pubmed
- ↑ Disturbi temporomandibolari E dolore orofacciale in Pubmed
- ↑ "Disturbi temporomandibolari E dolore orofacciale E logica fuzzy" in Pubmed
- ↑ Dubois D, Prade H, «Fundamentals of Fuzzy Sets», Kluwer Academic Publishers, 2000, Boston».
- ↑ Zhang W, Yang J, Fang Y, Chen H, Mao Y, Kumar M, «Analytical fuzzy approach to biological data analysis», in Saudi J Biol Sci, 2017».
PMID:28386181 - PMCID:PMC5372457
DOI:10.1016/j.sjbs.2017.01.027 - ↑ Lazar P, Jayapathy R, Torrents-Barrena J, Mol B, Mohanalin, Puig D, «Fuzzy-entropy threshold based on a complex wavelet denoising technique to diagnose Alzheimer disease», in Healthc Technol Lett, The Institution of Engineering and Technology, 2016».
PMID:30800318 - PMCID:PMC6371778
DOI:10.1049/htl.2016.0022 - ↑ •SMUTS J.C. 1926, Holism and Evolution, London: Macmillan.
- ↑ Mehrdad Farzandipour, Ehsan Nabovati, Soheila Saeedi, Esmaeil Fakharian. Fuzzy decision support systems to diagnose musculoskeletal disorders: A systematic literature review . Comput Methods Programs Biomed. 2018 Sep;163:101-109. doi: 10.1016/j.cmpb.2018.06.002. Epub 2018 Jun 6.
- ↑ Long Huang, Shaohua Xu, Kun Liu, Ruiping Yang, Lu Wu. A Fuzzy Radial Basis Adaptive Inference Network and Its Application to Time-Varying Signal Classification . Comput Intell Neurosci, 2021 Jun 23;2021:5528291. doi: 10.1155/2021/5528291.eCollection 2021.
- ↑ Mehrbakhsh Nilashi, Othman Ibrahim, Ali Ahani. Accuracy Improvement for Predicting Parkinson's Disease Progression. Sci Rep. 2016 Sep 30;6:34181. doi: 10.1038/srep34181.
particularly focusing on the field of the neurophysiology of the masticatory system