Difference between revisions of "Store:MTcondilo"

no edit summary
Line 1: Line 1:
===Condilo Mediotrusivo===
===Condilo Mediotrusivo===
'''Descrizione focalizzata dell'analisi matematica dei punti'''


* '''Punti e coordinate coinvolte'''
Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>P1_{M}</math> e <math>P7_{M}</math>, e il segmento che unisce i punti <math>P1_{M}</math> e <math>R_p</math>. Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.
** Nel contesto della nostra analisi, abbiamo tre punti nel piano 2D (<math>X,Y</math>)che ci interessano:
** Coordinate <math>P1_{M}</math> del punto 1 del condilo mediotrusivo: <math>(1164.1, -64.2)</math>
**Coordinate <math>P7_{M}</math> del punto 7 del condilo mediotrusivo: <math>(1148.2, -124.6)</math>
**Coordinate <math>R_p</math> del punto di riferimento del condilo mediotrusivo: <math>(1165, 11.4)</math>




 
<Center>
Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>P1_{M}</math> e <math>P7_{M}</math>, e il segmento che unisce i punti <math>P1_{M}</math> e <math>R_p</math>. Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio. [[File:Mediotrusive angle.jpeg|left|thumb|300x300px]]
{|
<br />
! colspan="5" |Tabella 5
 
{| class="wikitable"
|-
|-
!Punto!!Distanza
!Tracciato masticatorio
!Markers!!Distanza
(mm)
(mm)
!Direzione in X
!Direzione  
(antero-posteriore)
(X--posteriore)
!Direzione in Y
!Direzione
(latero-mediale)
(Y--mediale)
|-
|-
| rowspan="8" |[[File:Mediotrusive angle.jpeg|400x400px|center]]'''Figura 5:'''
|2||5.09||Protrusiva
|2||5.09||Protrusiva
|Mediale
|Medializzazione
|-
|-
|3||14.81
|3||14.81
|Protrusiva||Mediale
|Protrusiva||Medializzazione
|-
|-
|4
|4
|25.58||Protrusiva||Mediale
|25.58||Protrusiva||Medializzazione
|-
|-
|5||26.54||Protrusiva||Mediale
|5||26.54||Protrusiva||Inversione
|-
|-
|6||14.57||Protrusiva
|6||14.57||Protrusiva
|Mediale
|Lateralizzazione
|-
|7* ||6.25||Protrusiva||Lateralizzazione
|-
|-
|7*||6.25||Protrusiva|| Mediale
|8
|1.19
|Protrusiva
|Lateralizzazione
|-
|-
|8 ||1.19||Protrusiva||Mediale
| colspan="4" |
|}
|}
</Center>
Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo abbiamo una distanza dal punto di partenza di 6.25 mm ed un angolo calcolato sull'arcoseno <math>\theta = \arccos(-0.971) \approx 166.43^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''. Per approfondire la procedura matematica vedi{{Tooltip|2=L'angolo tra due segmenti può essere calcolato utilizzando la trigonometria vettoriale. Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: il vettore tra il punto <math>P1_{M}</math> e il punto <math>P7_{M}</math>: <math>\vec{AB} = P7_{M}-P1_{M}=(1148.2,-124.6)-(1164.1,-64.2)=(-15.9,-60.4)</math>. Il vettore tra il punto <math>P1_{M}</math> e il punto di riferimento <math>R_p</math>: <math>\vec{AC}=R_p-P1_{M}=(1165,11.4)-(1164.1,-64.2)=(0.9,75.6)</math>. Questo metodo ci permette di rappresentare le relazioni angolari tra movimenti distinti nello spazio. Il prodotto scalare tra i vettori <math>\vec{AB}</math> e <math>\vec{AC}</math> è dato dalla formula: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>. Sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-15.9) \cdot (0.9) + (-60.4) \cdot (75.6) = -14.31 - 4566.24 = -4580.55</math>. Una volta eseguiti i passaggi trigonometrici e il prodotto scalare, si passa al calcolo della lunghezza del vettore: <math>|\vec{AB}| = \sqrt{AB_x^2 + AB_y^2} = \sqrt{(-15.9)^2 + (-60.4)^2} = \sqrt{252.81 + 3648.16} = \sqrt{3900.97} \approx 62.45</math>. Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math>. Sostituendo i valori: <math>\cos(\theta) = \frac{-4580.55}{62.45 \cdot 75.58} = \frac{-4580.55}{4717.25} \approx -0.971</math>. L'angolo <math>\theta</math> è calcolato tramite la funzione arccoseno: <math>\theta = \arccos(-0.971) \approx 166.43^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''.}}
Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo abbiamo una distanza dal punto di partenza di 6.25 mm ed un angolo calcolato sull'arcoseno <math>\theta = \arccos(-0.971) \approx 166.43^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''. Per approfondire la procedura matematica vedi{{Tooltip|2=L'angolo tra due segmenti può essere calcolato utilizzando la trigonometria vettoriale. Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: il vettore tra il punto <math>P1_{M}</math> e il punto <math>P7_{M}</math>: <math>\vec{AB} = P7_{M}-P1_{M}=(1148.2,-124.6)-(1164.1,-64.2)=(-15.9,-60.4)</math>. Il vettore tra il punto <math>P1_{M}</math> e il punto di riferimento <math>R_p</math>: <math>\vec{AC}=R_p-P1_{M}=(1165,11.4)-(1164.1,-64.2)=(0.9,75.6)</math>. Questo metodo ci permette di rappresentare le relazioni angolari tra movimenti distinti nello spazio. Il prodotto scalare tra i vettori <math>\vec{AB}</math> e <math>\vec{AC}</math> è dato dalla formula: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>. Sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-15.9) \cdot (0.9) + (-60.4) \cdot (75.6) = -14.31 - 4566.24 = -4580.55</math>. Una volta eseguiti i passaggi trigonometrici e il prodotto scalare, si passa al calcolo della lunghezza del vettore: <math>|\vec{AB}| = \sqrt{AB_x^2 + AB_y^2} = \sqrt{(-15.9)^2 + (-60.4)^2} = \sqrt{252.81 + 3648.16} = \sqrt{3900.97} \approx 62.45</math>. Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math>. Sostituendo i valori: <math>\cos(\theta) = \frac{-4580.55}{62.45 \cdot 75.58} = \frac{-4580.55}{4717.25} \approx -0.971</math>. L'angolo <math>\theta</math> è calcolato tramite la funzione arccoseno: <math>\theta = \arccos(-0.971) \approx 166.43^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''.}}


'''Conclusione della Cinematica Condilare Mediortusiva'''
Nel sistema masticatorio, il condilo mediotrusivo segue una traiettoria complessa che contribuisce all'equilibrio dinamico durante i movimenti mandibolari laterali. I punti analizzati <math>P1_{M}</math>, <math>P7_{M}</math> e il punto di riferimento <math>R_p</math> rappresentano posizioni articolari chiave lungo il tragitto del condilo mediotrusivo. Studiare questi punti permette di calcolare l'angolo tra due segmenti definiti, essenziali per comprendere i vettori di forza e l'orientamento della mandibola in movimento. In sintesi, l’angolo calcolato tra i punti analizzati del condilo mediotrusivo non solo rappresenta un parametro meccanico, ma funge da indicatore di stabilità e simmetria del sistema masticatorio. Le variazioni angolari rispetto al valore fisiologico suggeriscono l’esistenza di forze anomale o alterazioni che possono influenzare la cinematica mandibolare e potenzialmente contribuire a patologie articolari, offrendo un potenziale punto di osservazione per diagnosi più accurate e interventi clinici mirati.
<br />
<br />
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,184

edits