Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,119
edits
Line 105: | Line 105: | ||
* La risposta forse è più semplice di quanto sembra. | * La risposta forse è più semplice di quanto sembra. | ||
* '''EMG artefatto''' | * '''EMG artefatto''' | ||
== Free way space before stimulation<ref>nature | |||
Published: 16 July 2024 | |||
Predictive modelling of freeway space utilising clinical history, normalised muscle activity, dental occlusion, and mandibular movement analysis | |||
Taseef Hasan Farook, | |||
Tashreque Mohammed Haq, | |||
Lameesa Ramees & | |||
James Dudley </ref> == | |||
Lo spazio interocclusale, noto anche come "freeway space" dentale, è la distanza tra le arcate dentarie opposte quando la mandibola è in posizione di riposo fisiologico<ref>Pleasure, M. A. Correct vertical dimension and freeway space. J Am Dental Assoc 43, 160–163 (1951)</ref>. Esso funge da riferimento per le restaurazioni protesiche e influenza le relazioni occlusali e la dimensione verticale nell'odontoiatria restaurativa<ref>Pleasure, M. A. Correct vertical dimension and freeway space. J Am Dental Assoc 43, 160–163 (1951)</ref>. Mantenere uno spazio interocclusale adeguato assicura stabilità, comfort e funzionalità dei dispositivi protesici per il paziente, prevenendo disordini temporomandibolari (TMD) e affaticamento muscolare. Quando vengono escluse le variazioni anatomiche, cambiamenti anomali nello spazio interocclusale possono talvolta indicare abitudini parafunzionali attive, come il bruxismo<ref>Farook, T. H., Rashid, F., Alam, M. K. & Dudley, J. Variables infuencing the device-dependent approaches in digitally analysing jaw movement—a systematic review. Clin. Oral. Investig. 27(2), 489–504 (2022)</ref>. | |||
L'equilibrio dello spazio interocclusale è strettamente legato a fattori come il tono muscolare, la salute dell'articolazione temporomandibolare (TMJ) e l'occlusione dentale<ref>Widmalm, S. E. et al. Unbalanced lateral mandibular deviation associated with TMJ sound as a sign in TMJ disc dysfunction diagnosis. J. Oral. Rehabil. 43, 911–920 (2016)</ref>. Squilibri o tensioni in questi componenti possono influenzare la posizione di riposo della mandibola, influendo contemporaneamente sulla salute del complesso TMJ. Problemi come malocclusione, disallineamento, perdita dentale, restaurazioni protesiche, abitudini parafunzionali, affaticamento muscolare e invecchiamento contribuiscono a cambiamenti nello spazio interocclusale. Stimare lo spazio interocclusale in odontoiatria clinica è una sfida a causa della sua natura dinamica, influenzata da vari fattori. Ottenere misurazioni precise è complicato dalle variazioni individuali, dalla perdita dentale, dalle restaurazioni protesiche e dalle abitudini parafunzionali, e la mancanza di tecniche di misurazione standardizzate introduce soggettività e variabilità tra operatori<ref>Farook, T. H., Rashid, F., Alam, M. K. & Dudley, J. Variables infuencing the device-dependent approaches in digitally analysing jaw movement—a systematic review. Clin. Oral. Investig. 27(2), 489–504 (2022)</ref>. | |||
Affrontare queste sfide richiede una comprensione approfondita delle influenze multifattoriali sullo spazio interocclusale. Il deep learning, un sottogruppo del machine learning, è una forma di intelligenza artificiale basata sulla modellazione predittiva e si presenta come un approccio promettente per riconoscere schemi e variazioni nello spazio interocclusale influenzate dal tono muscolare, dalla salute del TMJ e dall'occlusione dentale. Ad esempio, le reti neurali convoluzionali (CNN) possono apprendere relazioni complesse e potenzialmente standardizzare il processo di stima, riducendo la soggettività e la variabilità tra operatori, mentre modelli basati su regressione, come XGBoost, possono prevedere variabili continue e adattarsi alle significative variazioni individuali, tenendo conto di fattori come discrepanze occlusali e l'ampiezza di movimento mandibolare per fornire una stima solida dello spazio interocclusale<ref>Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 785–794 (2016)</ref><ref>Farook, T. H. & Dudley, J. Automation and deep (machine) learning in temporomandibular joint disorder radiomics. A Systematic review. J. Oral. Rehabil. 50(6), 501–521 (2023)</ref>. | |||
== Razionale dello studio == | |||
Nonostante i potenziali vantaggi, l'applicazione di approcci quantitativi per prevedere variabili continue, come lo spazio interocclusale, attraverso una moltitudine di variabili predittive, non è stata documentata nella letteratura dentale peer-reviewed. Sebbene i modelli di deep learning siano sempre più utilizzati in odontoiatria, la loro percezione di essere una "scatola nera" ha spinto i ricercatori a esplorare metodi per estrarre spiegazioni da questi modelli<ref>Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 785–794 (2016)</ref><ref>Farook, T. H. & Dudley, J. Automation and deep (machine) learning in temporomandibular joint disorder radiomics. A Systematic review. J. Oral. Rehabil. 50(6), 501–521 (2023)</ref>. Lo studio attuale cerca di colmare questa lacuna nella letteratura dentale, esplorando la previsione accurata dello spazio interocclusale utilizzando parametri diversi elaborati attraverso il deep learning. Inoltre, sono stati utilizzati modelli di spiegabilità per decifrare quali parametri vengono prioritizzati dai modelli di deep learning nelle decisioni predittive<ref>Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 785–794 (2016)</ref>. I parametri presi in considerazione comprendono la storia clinica, i fattori occlusali, la valutazione del movimento mandibolare, l'analisi del movimento dei tessuti molli, l'attività muscolare normalizzata derivata dall'elettromiografia elaborata tramite deep learning e l'analisi non invasiva della funzione dell'articolazione temporomandibolare (TMJ). | |||
== Obiettivo della ricerca == | |||
Il presente studio mirava a prevedere lo spazio interocclusale dentale esaminando la storia clinica, i parametri occlusali, i movimenti mandibolari, il movimento dei tessuti molli, l'attività muscolare tramite elettromiografia (EMG) e la scansione intraorale 3D. Si ipotizzava che la previsione accurata dello spazio interocclusale non potesse basarsi esclusivamente sulla storia clinica e sui parametri investigativi non invasivi. | |||
== Materiali e metodi == | |||
Il Comitato Etico per la Ricerca Umana dell'Università di Adelaide (H-2022-185) ha approvato questo studio, che ha inoltre seguito il protocollo della checklist 2021 "Minimum Information for Clinical Artificial Intelligence Modelling" (MI-CLAIM)<ref>Makowski, D. et al. NeuroKit2: A Python toolbox for neurophysiological signal processing. Behav. Res. Methods 53, 1689–1696 (2021)</ref>. | |||
== Criteri di eleggibilità == | |||
I criteri di eleggibilità richiedevano che i partecipanti avessero la maggior parte dei loro denti permanenti naturali, con non più di un dente mancante per quadrante. Se mancava un primo molare, tutti gli altri denti dell'arcata dovevano essere presenti. Gli individui venivano esclusi se presentavano arcate edentule di lunga estensione, arcate dentarie accorciate, molari decidui ritenuti, o due o più protesi parziali fisse o corone dentali. Per promuovere la randomizzazione e prevenire l'esclusione accidentale di individui che mostravano segni clinici di disfunzione dell'articolazione temporomandibolare ma non riferivano la condizione, i sintomi percepiti o le condizioni mediche esistenti non sono stati utilizzati come criteri di esclusione. | |||
== Reclutamento dei partecipanti == | |||
Tutti gli esperimenti sono stati eseguiti in conformità con le linee guida e le normative pertinenti. A metà del 2023, sono stati reclutati 70 partecipanti dall'Australia Meridionale, con 66 che hanno completato l'intero processo dopo aver ottenuto il consenso informato da tutti i soggetti/partecipanti. I segnali EMG di quattro individui erano affetti da forte rumore generato da conduzioni micro-elettriche causate dalla peluria facciale. La rimozione manuale del rumore avrebbe alterato sostanzialmente il segnale originale, quindi questi quattro partecipanti sono stati esclusi. La Figura 1 illustra i passaggi della raccolta dei dati clinici per lo studio, spiegati nelle sottosezioni successive. Prima della ricerca attuale, sono state condotte revisioni sistematiche sulle fonti più comuni di bias derivanti da fattori umani e dipendenti dal dispositivo nel tracciamento della mandibola e nelle decisioni basate sull'intelligenza artificiale riguardanti il complesso dell'articolazione temporomandibolare<ref>Farook, T. H., Rashid, F., Alam, M. K. & Dudley, J. Variables infuencing the device-dependent approaches in digitally analysing jaw movement—a systematic review. Clin. Oral. Investig. 27(2), 489–504 (2022)</ref><ref>Shwartz-Ziv, R. & Armon, A. Tabular data: Deep learning is not all you need. arXiv preprint arXiv:2106.03253 (2021)</ref>. | |||
== Raccolta della storia clinica == | |||
I partecipanti hanno inizialmente completato un questionario semi-strutturato riguardante la demografia, le abitudini parafunzionali auto-riferite e i sintomi di disfunzione temporomandibolare. Successivamente, hanno riportato la loro storia di trattamenti ortodontici e le condizioni mediche diagnosticate dai medici generici. | |||
== Tracciamento dei punti di riferimento facciali == | |||
I partecipanti sono stati seduti a 45 cm da una fotocamera consumer (Logitech Brio 4K) e istruiti a eseguire l'apertura massima della bocca senza assistenza, l'escursione laterale massima e la protrusione anteriore massima<ref>Farook, T. H., Saad, F. H., Ahmed, S. & Dudley, J. Dental Loop FLT: Facial landmark tracking. SofwareX 24, 101531 (2023)</ref>. Ogni partecipante ha eseguito una singola sessione di registrazione video utilizzando la fotocamera Brio-4K con risoluzione 1080p a 60 fps, con una lente da 13 megapixel. I video sono stati prodotti con un bitrate nativo di 2500 Kbps, codificati utilizzando H.264 NVENC ed esportati in formato Matroska Video (.mkv). | |||
Le registrazioni video sono state elaborate utilizzando un sistema di tracciamento dei punti di riferimento facciali basato su deep learning per valutare i modelli abituali di inclinazione della testa e gli spostamenti dei tessuti molli durante le escursioni laterali e il parlato, basato su implementazioni di ricerche precedenti<ref>Saad, F. H. et al. Facial and mandibular landmark tracking with habitual head posture estimation using linear and fducial markers. Healthc. Technol. Lett. 11(1), 21–30 (2024)</ref>. Ciò è stato realizzato con un software open-source sviluppato internamente dagli autori, ovvero Dental Loop FLT12 v5.2 (<https://github.com/ElsevierSofwareX/SOFTX-D-23-00353>) e Dental Loop SnP v1.0 (<https://github.com/saadism777/Dental-Loop-SnP-Speech-and-Phonetic-Pattern-Recognition>)<ref>Farook, T. H., Saad, F. H., Ahmed, S. & Dudley, J. Dental loop SnP: Speech and phonetic pattern recognition. SofwareX 24, 101604 (2023)</ref>. Il software ha eseguito il rilevamento e il tracciamento dei punti di riferimento facciali sia per i dati retrospettivi che per il tracciamento in tempo reale, utilizzando i pacchetti OpenCV e Dlib codificati secondo gli standard PEP-8<ref>Farook, T. H., Saad, F. H., Ahmed, S. & Dudley, J. Dental Loop FLT: Facial landmark tracking. SofwareX 24, 101531 (2023)</ref><ref>Farook, T. H., Saad, F. H., Ahmed, S. & Dudley, J. Dental loop SnP: Speech and phonetic pattern recognition. SofwareX 24, 101604 (2023)</ref>. Ha introdotto punti di riferimento cefalometrici per i tessuti molli personalizzati per misurazioni continue e ha visualizzato le statistiche video in una finestra OpenCV ridimensionabile. I risultati sono stati memorizzati e automaticamente tabulati, evitando così gli errori comunemente associati al tracciamento e alla segmentazione delle immagini basati sull'operatore. | |||
== Elettrognatografia digitale == | |||
I partecipanti sono stati quindi istruiti a ripetere le stesse attività connessi a un elettrognatografo (EGN) (JT-3D; BioResearch Associates Inc.). Ogni attività è stata ripetuta tre volte, e i valori medi degli spostamenti su piani verticali, laterali e sagittali sono stati quantificati in millimetri utilizzando la suite software fornita dal produttore (BioPak v8.9; BioResearch Associates Inc.). Lo spazio interocclusale è stato misurato istruendo i partecipanti ad assumere una posizione verticale di riposo e calibrando l'elettrognatografo per leggere questa posizione come spostamento 0. I partecipanti sono stati quindi invitati a portare le loro mandibole alla dimensione verticale occlusale e a far toccare i denti insieme due volte. I valori di spostamento verticale sono stati registrati per entrambi i tocchi. Questa procedura è stata eseguita secondo le raccomandazioni del produttore. Il processo è stato ripetuto tre volte per ciascun partecipante, e lo spostamento medio è stato registrato in millimetri. | |||
Successivamente, i partecipanti hanno masticato una gomma da masticare senza zucchero per specifici intervalli di 15 secondi su ciascun lato e per ulteriori 20 secondi dove hanno masticato la gomma naturalmente. Sono stati registrati i valori quantitativi per l'ampiezza di movimento verticale e inclinato. I partecipanti sono stati quindi invitati a eseguire espressioni fonetiche di consonanti specifiche (fricative, sibilanti, linguodentali e bilabiali) mentre l'EGN rimaneva collegato. Successivamente, è stato chiesto ai partecipanti di pronunciare i numeri da 61 a 69, il che ha fornito una panoramica delle variazioni nel movimento della mandibola durante il passaggio tra le quattro consonanti specifiche. Lo spostamento mandibolare medio durante la pronuncia di ciascuna consonante è stato registrato. Gli script del parlato sono stati derivati da frasi stabilite in inglese delineate da Cheireici et al. nel 1979<ref>Chierici, G. & Lawson, L. Clinical speech considerations in prosthodontics: Perspectives of the prosthodontist and speech pathologist. J. Prosthet. Dent. 29, 29–39 (1973)</ref>. | |||
{{Bib}} | {{Bib}} |
edits