Difference between revisions of "Introduction"

no edit summary
Line 176: Line 176:
|-
|-
|
|
*'''''<math>P-value</math>''''': <br>In medicine, for example, to confirm an experiment, a series of data coming from laboratory instruments or from surveys, the "''Statistical Inference''" is used, and in particular a famous value called "" 'significance test' '" or <math>P-value</math>. Well, even this concept, now part of the researcher's genesis, is wavering. In a recent study, attention was focused on a "Campaign" conducted on "Nature" against the concept of "significance tests"<ref>{{cita libro  
*'''''<math>P-value</math>''''':   In medicine, for example, to confirm an experiment or validate a series of data collected through laboratory instruments or surveys, reliance is placed on "Statistical Inference," and in particular on a well-known value called "significance test" (P-value). However, even this concept, now rooted in the practice of researchers, is being questioned. A recent study has focused attention on a campaign conducted in the journal "Nature" against the use of the "significance test."<ref>{{cita libro  
  | autore = Amrhein V
  | autore = Amrhein V
  | autore2 = Greenland S
  | autore2 = Greenland S
Line 191: Line 191:
  | DOI = 10.1038/d41586-019-00857-9
  | DOI = 10.1038/d41586-019-00857-9
  | OCLC =  
  | OCLC =  
  }} Mar;567(7748):305-307.</ref>.<br />With over 800 signatories supporting important scientists, this "campaign" can be considered an important milestone and a "Silent Revolution"<ref>{{cita libro  
  }} Mar;567(7748):305-307.</ref> With over 800 signatories, including eminent scientists, this campaign can be seen as an important turning point and a "Silent Revolution" in the field of statistics, touching logical and epistemological aspects.<ref>{{cita libro  
  | autore = Rodgers JL
  | autore = Rodgers JL
  | titolo = The epistemology of mathematical and statistical modeling: a quiet methodological revolution
  | titolo = The epistemology of mathematical and statistical modeling: a quiet methodological revolution
Line 204: Line 204:
  | DOI = 10.1037/a0018326
  | DOI = 10.1037/a0018326
  | OCLC =  
  | OCLC =  
  }} Jan;65(1):1-12.</ref> in statistics on logical and epistemological aspects<ref>{{cita libro  
  }} Jan;65(1):1-12.</ref><ref>{{cita libro  
  | autore = Meehl P
  | autore = Meehl P
  | titolo = The problem is epistemology, not statistics: replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions
  | titolo = The problem is epistemology, not statistics: replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions
Line 231: Line 231:
  | DOI =  
  | DOI =  
  | OCLC =  
  | OCLC =  
  }}</ref>. The campaign criticizes the too simplified statistical analyses that can still be found in many publications to date.<br>This eventually led to a discussion, sponsored by the American Statistical Association, which spawned a special issue of "The American Statistician Association" titled "''Statistical Inference in the 21st Century: A World Beyond p <0,05''", containing 43 articles by forward-looking statisticians<ref name="wasser">{{cita libro  
  }}</ref> The critique is aimed at overly simplified statistical analyses, still present in numerous publications. This has stimulated a debate, sponsored by the American Statistical Association, which led to the creation of a special issue of "The American Statistician Association" titled "Statistical Inference in the 21st Century: A World Beyond p < 0.05", containing 43 articles by statisticians looking towards the future[16]. This special issue proposes new ways to communicate the significance of research findings beyond the arbitrary threshold of a P-value and offers guidelines for research that accepts uncertainty, is reflective, open, and modest in claims.<ref name="wasser">{{cita libro  
  | autore = Wasserstein RL
  | autore = Wasserstein RL
  | autore2 = Schirm AL
  | autore2 = Schirm AL
Line 246: Line 246:
  | DOI = 10.1080/00031305.2019.1583913
  | DOI = 10.1080/00031305.2019.1583913
  | OCLC =  
  | OCLC =  
  }} 73, 1–19. </ref>. The special question proposes both new ways to signal the importance of research results beyond the arbitrary threshold of a <math>P-value</math>, and some guides to conduct of research: the researcher should accept uncertainty, be reflective, open and modest in his/ her statements<ref name="wasser" />. Future will show whether or not those attempts to statistically better support science beyond the significance tests will be reflected in future publications<ref>{{cita libro  
  }} 73, 1–19. </ref> The future will reveal whether these attempts to provide more solid statistical support to science, beyond traditional significance tests, will find resonance in future publications.<ref>{{cita libro  
  | autore = Dettweiler Ulrich
  | autore = Dettweiler Ulrich
  | titolo = The Rationality of Science and the Inevitability of Defining Prior Beliefs in Empirical Research
  | titolo = The Rationality of Science and the Inevitability of Defining Prior Beliefs in Empirical Research
Line 259: Line 259:
  | DOI = 10.3389/fpsyg.2019.01866
  | DOI = 10.3389/fpsyg.2019.01866
  | OCLC =  
  | OCLC =  
  }} Aug 13;10:1866.</ref>. In this field too, we are on the same wavelength as the Progress of Science according to Kuhn, in that we are talking about the re-modulation of some descriptive statistical contents within the scope of disciplinarity.
  }} Aug 13;10:1866.</ref> This evolution aligns with Kuhn's concept of scientific progress, reflecting a reworking of some descriptive statistical content within the discipline.
|-
|-
|
|
* '''Interdisciplinarity''': <br>In science policy, it is generally recognized that ''science-based problem solving requires interdisciplinary research'' ('''IDR'''), as proposed by the EU project called Horizon 2020<ref>European Union, ''[https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges Horizon 2020]''</ref>. In a recent study, the authors focus on the question why researchers have cognitive and epistemic difficulties in conducting IDR. It is believed that the loss of philosophical interest in the epistemology of interdisciplinary research is due to a philosophical paradigm of science called "Physics Paradigm of Science", which prevents recognition of important IDR changes in both the philosophy of science and research.<br>The proposed alternative philosophical paradigm, called "''Engineering Paradigm of Science''", makes alternative philosophical assumptions about aspects such as the purpose of science, the character of knowledge, the epistemic and pragmatic criteria for the acceptance of knowledge and the role of technological tools. Consequently, scientific researchers need so-called ''metacognitive scaffolds'' to assist them in the analysis and reconstruction of how "knowledge" is constructed in different disciplines.<br>In interdisciplinary research, metacognitive scaffolds help interdisciplinary communication analyse and articulate how the discipline builds knowledge<ref name=":0">{{cita libro  
* '''Interdisciplinarity''': <br>In the field of science policy, it is universally recognized that solving science-based problems requires an interdisciplinary research approach (IDR), as highlighted by the European Union's Horizon 2020 project.<ref>European Union, ''[https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges Horizon 2020]''</ref> Recent studies have explored the reasons for the cognitive and epistemic difficulties that researchers encounter in conducting IDR. One identified cause is the decline of philosophical interest towards the epistemology of IDR, attributed to the dominant "Physical Paradigm of Science." This paradigm limits the recognition of significant developments in IDR, both in the context of the philosophy of science and in the practice of research itself. In response, an alternative philosophical paradigm has been proposed, called the "Engineering Paradigm of Science," which offers alternative philosophical perspectives on fundamental aspects such as the purpose of science, the nature of knowledge, the epistemic and pragmatic criteria for the acceptance of knowledge, and the role of technological tools. Consequently, it highlights the need for researchers to make use of metacognitive support structures, called metacognitive scaffolds, to facilitate the analysis and reconstruction of the processes by which knowledge is constructed across different disciplines. In the context of IDR, such metacognitive scaffolds are essential for promoting effective communication between disciplines, allowing scholars to analyze and articulate how each discipline contributes to the construction of knowledge.<ref name=":0">{{cita libro  
  | autore = Boon M
  | autore = Boon M
  | autore2 = Van Baalen S
  | autore2 = Van Baalen S
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,792

edits