Difference between revisions of "5° Klinischer Fall: Spontane elektromyographische Aktivität"

no edit summary
Line 315: Line 315:
Die Anzahl der polyphasischen Einheiten nimmt sowohl bei Myopathien, Neuropathien als auch bei Pathologien der Motoneurone zu. Polyphasie zeigt daher eine zeitliche Streuung der Muskelzellpotenziale innerhalb einer motorischen Einheit an. Bei einigen Abnormalitäten, sogenannten Doppel- oder Dreifachentladungen, feuert eine motorische Einheit zwei- oder dreimal in sehr kurzen Zeitintervallen und repräsentiert einen metabolischen Störungszustand, der mit einer Hypererregbarkeit des motoneuralen Pools verbunden ist. In Abbildung 5 können wir eine typische Aufzeichnung minimaler willkürlicher Aktivität polyphasischer MUAP und eine Doppelentladung beobachten, die einen Zustand der motorischen Neuronenpathologie darstellt. Vergleicht man diese Aufzeichnung der pathologischen motorischen Einheit mit einigen der Abbildungen 1C, insbesondere den 5,7,13 und 23, mit den Werten der jeweiligen Amplitude von 678 μV; 419 μV3; 686 μV und 530 μV, sowie der Dauer von 8,2, 4,2, 6,2 ms und 8,4 ms, können wir feststellen, dass die aufgezeichnete Aktivität am linken Massetermuskel des fraglichen klinischen Falls keine elektrophysiologischen Merkmale aufweist, die mit einem Schädigungsbild des II. Motoneurons übereinstimmen können.         
Die Anzahl der polyphasischen Einheiten nimmt sowohl bei Myopathien, Neuropathien als auch bei Pathologien der Motoneurone zu. Polyphasie zeigt daher eine zeitliche Streuung der Muskelzellpotenziale innerhalb einer motorischen Einheit an. Bei einigen Abnormalitäten, sogenannten Doppel- oder Dreifachentladungen, feuert eine motorische Einheit zwei- oder dreimal in sehr kurzen Zeitintervallen und repräsentiert einen metabolischen Störungszustand, der mit einer Hypererregbarkeit des motoneuralen Pools verbunden ist. In Abbildung 5 können wir eine typische Aufzeichnung minimaler willkürlicher Aktivität polyphasischer MUAP und eine Doppelentladung beobachten, die einen Zustand der motorischen Neuronenpathologie darstellt. Vergleicht man diese Aufzeichnung der pathologischen motorischen Einheit mit einigen der Abbildungen 1C, insbesondere den 5,7,13 und 23, mit den Werten der jeweiligen Amplitude von 678 μV; 419 μV3; 686 μV und 530 μV, sowie der Dauer von 8,2, 4,2, 6,2 ms und 8,4 ms, können wir feststellen, dass die aufgezeichnete Aktivität am linken Massetermuskel des fraglichen klinischen Falls keine elektrophysiologischen Merkmale aufweist, die mit einem Schädigungsbild des II. Motoneurons übereinstimmen können.         


The number of polyphasic units increases both in myopathies, neuropathies or motor neuron pathologies. Polyphasia therefore indicates a temporal dispersion of muscle fiber potentials within a motor unit. In some abnormalities called doublets or triplets a motor unit fires two or three times at a very short time interval and are representative of a metabolic disorder associated with hyperexcitability of the motoneural pool. In figure 5 we can observe a typical tracing of minimal voluntary activity of polyphasic MUAP and a double that represents a motor neuron pathology state. Comparing this recording of pathological motor unit with some of the fig.1C, and in particular the 5,7,13 and 23 with the values of respective amplitude <math>678\mu V;419\mu V3;686\mu V e 530\mu V</math>duration <math>8.2, 4.2,6.2 msec </math> and <math>8.4 msec </math> we can state that the activity recorded on the left masseter, of the clinical case in question, it has no electrophysiological characteristics that can be superimposed on a picture of damage to the II motor neuron.         
Die Anzahl der polyphasischen Einheiten nimmt sowohl bei Myopathien, Neuropathien als auch bei Pathologien der Motoneurone zu. Polyphasie zeigt daher eine zeitliche Streuung der Muskelzellpotenziale innerhalb einer motorischen Einheit an. Bei einigen Abnormalitäten, sogenannten Doppel- oder Dreifachentladungen, feuert eine motorische Einheit zwei- oder dreimal in sehr kurzen Zeitintervallen und repräsentiert einen metabolischen Störungszustand, der mit einer Hypererregbarkeit des motoneuralen Pools verbunden ist. In Abbildung 5 können wir eine typische Aufzeichnung minimaler willkürlicher Aktivität polyphasischer MUAP und eine Doppelentladung beobachten, die einen Zustand der motorischen Neuronenpathologie darstellt. Vergleicht man diese Aufzeichnung der pathologischen motorischen Einheit mit einigen der Abbildungen 1C, insbesondere den 5,7,13 und 23, mit den Werten der jeweiligen Amplitude von <math>678\mu V;419\mu V3;686\mu V e 530\mu V</math>, sowie der Dauer von <math>8.2, 4.2,6.2 msec </math>, können wir feststellen, dass die aufgezeichnete Aktivität am linken Massetermuskel des fraglichen klinischen Falls keine elektrophysiologischen Merkmale aufweist, die mit einem Schädigungsbild des II. Motoneurons übereinstimmen können.         
===== '''Interferenzmuster''' =====
Die Kontraktionsintensität erhöht die Anzahl der Motorneuronen, die sehr schnell zu feuern beginnen, was die Identifizierung einzelner motorischer Einheitspotenziale ausschließt. Dieses Phänomen wird als Interferenzmuster bezeichnet. Die Dichte der Spitzen und die durchschnittliche Amplitude der summierten Reaktionen werden von einer Reihe von Faktoren bestimmt, wie z.B.: die absteigende Ausgabe aus der Großhirnrinde, die Anzahl der fähigen Motorneuronen, die Feuerrate jeder motorischen Einheit, die Wellenform einzelner Potenziale und die Wahrscheinlichkeit der Phasenlöschung (Kollision). In unserem klinischen Fall war das auf den Massetermuskeln aufgezeichnete Interferenzmuster sowohl in der Amplitude als auch in der Frequenz normal.


       
Aus der detaillierten Analyse der EMG-Aufzeichnung im Zusammenhang mit dem beschriebenen klinischen Fall können wir die Abwesenheit eines organischen Schadens an der motorischen Einheit und/oder den Muskelzellen aus verschiedenen Gründen bestätigen, wie z.B.: das Fehlen von spontaner Aktivität, die normale Morphologie der motorischen Einheit und die interferenziale Rekrutierung. Die Interpretation der auf dem linken Massetermuskel aufgezeichneten EMG-Aktivität (Abbildung 1) bleibt jedoch noch offen, da sie sich, unter Bezugnahme auf die oben beschriebenen Konzepte, nicht als "spontane Aktivität" bezeichnen lässt, da sie keine Ausdrucksform der Denervation ist, noch als "Fehlen der Muskelentspannung", da der Patient den Muskel weder freiwillig noch mit Dehnübungen entspannen kann, noch als "EMG-Aktivität in Ruhe aufgrund psychischer Störung", da die psychometrischen Tests negativ sind.{{q2|Diese Aktivität scheint auf einen Schrittmacher zentralen Ursprungs zu reagieren, der mit einer stabilen Frequenz auf zweitorderige Motoneuronen (Trigeminus-Motorneuron) feuert. Leider ist es schwer zu sagen, ob diese Aktivität auf eine Funktionsstörung des Motoneurons II oder des kortikalen und/oder subkortikalen Systems zurückzuführen ist.|}}


==== Pharmakologische experimentelle Studie ====
===== Interferential pattern =====
Es wurde eine experimentelle Studie vorgeschlagen, mit Einverständnis des Patienten, bei der versucht wurde, die neuronale Aktivität des Hirnstamms pharmakologisch von der kortikalen Aktivität zu entkoppeln. Gleichzeitig mit der pharmakologischen Entkopplung wurde die EMG-Aktivität mit einer koaxialen Nadel am linken Masseter überwacht und kontextuell der Lidschlussreflex. Das experimentelle Modell, das wir kurz erläutern werden, wurde durch zwei wesentliche Elemente geschaffen, nämlich: die Wahl des spezifischen Anästhetikums für den Zweck der Studie (Propofol) und die Kontrolle der elektrophysiologischen Aktivität des Hirnstamms durch den Lidschlussreflex.
Increasing the contraction greatly increases the motor units which start firing very rapidly and this precludes the identification of individual motor unit potentials. This phenomenon has been given the name of interference pattern. The density of the spikes and the average amplitude of the summed responses are determined by a series of factors such as: the descending output from the cortex, the number of motor neurons capable of firing, the firing frequency of each motor unit, the waveform of individual potentials and the probability of phase cancellation (collision). In our clinical case, the interference pattern recorded on the masseters was normal in both amplitude and frequency.  


From the detailed analysis of the EMG tracing relating to the clinical case described, we can confirm the absence of organic damage to the motor unit and/or muscle fibers for the various reasons explained, such as: the absence of spontaneous activity, the normal morphology of the motor unit and interferential recruitment. The presence of EMG activity recorded on the left masseter still remains to be interpreted (fig.1) which, referring to the concepts described above, cannot be called "spontaneous activity" because it is not an expression of denervation, nor "lack of muscle relaxation" as the patient is unable to relax the muscle voluntarily or with stretching manoeuvres, nor of “EMG activity at rest due to psychic disorder as the psychometric tests are negative.{{q2|This activity seems to respond to a pacemaker of central origin which fires at a stable frequency on second order motor neurons (trigeminal motor nucleus). Unfortunately it is difficult to say whether this activity is due to a functional disorder of the motor neuron II or of the cortical and/or subcortical system.|}}
===== '''Propofol''' =====
Die Wirkungen von Anästhetika führen zu Bewusstseinsverlust, Gedächtnisverlust, Veränderungen der spontanen Aktivität, Dämpfung der Schutzreflexe, Verlust der posturalen Reflexe und auch zu unerwünschten Wirkungen wie Halluzinationen, Euphorie und Amnesie. Darüber hinaus können sie den Spiegel oder die Homöostase von Neurotransmittern im Gehirn wie Dopamin, Noradrenalin und Acetylcholin (ACh) beeinflussen.<ref>Angel A. : Central neuronal pathways and the process of anaesthesia. British Journal of Anaesthesia 1993; 71:148-163</ref> ACh war der erste Neurotransmitter, der beschrieben wurde, und cholinerge Neuronen sind weit im Gehirn verteilt. Cholinerge Mechanismen sind bekanntermaßen wichtig im Striatum, wo ein Gleichgewicht zwischen Dopamin- und ACh-Freisetzung für normale motorische Ausgabe sorgt,<ref>Iversen SD.: Behavioural evaluation of cholinergic drug. Life Sciences 1997; 60: 1145-1152</ref> im Hippocampus und im frontalen Cortex, wo ACh eine wichtige Rolle bei der Regulation von Bewusstsein und Gedächtnis spielt.


==== Pharmacological experimental study ====
Propofol verstärkt wahrscheinlich die hemmende Wirkung von GABAA-Rezeptoren und hat eine andere Wirkung als Barbiturate oder Benzodiazepine. Eine elegante Studie,<ref>Kikuchi T, Wang Y, Sato K, Okumura F.: In vivo effects of propofol on aceylcholine release from the fronatl cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats</ref> die mittels intrazerebraler Mikrodialyse bei Mäusen durchgeführt wurde, zeigte, dass Propofol in Dosen von 50 mg/kg die Freisetzung von ACh aus dem frontalen Cortex um 85 %, aus dem Hippocampus um 72 % und aus dem Striatum um 19 % verringerte.
An experimental study was proposed, with the consent of the patient, in which an attempt was made to pharmacologically uncouple the brainstem neuronal activity from the cortical one. Simultaneously with the pharmacological uncoupling, the EMG activity with a coaxial needle on the left masseter was monitored and contextually the blink reflex. The experimental model, which we are going to explain briefly, was created through two essential elements, namely: the choice of the specific anesthetic for the purpose of the study (propofol) and the control of the electrophysiological activity of the brainstem through the blink reflex


===== Propofol =====
===== '''Lidschlussreflex''' =====
The effects of anesthetics produce loss of consciousness, memory, changes in spontaneous activity, attenuation of protective reflexes, loss of postural reflexes and also adverse effects such as hallucinations, euphoria and amnesia. Furthermore they may affect the level or homeostasis of neurotransmitters in the brain such as dopamine, noraepinephrine and acetylcholine (ACh).<ref>Angel A. : Central neuronal pathways and the process of anaesthesia. British Journal of Anaesthesia 1993; 71:148-163</ref> Ach was the first neurotransmitter to be described and cholinergic neurons are widely distributed in the brain. Cholinergic mechanisms are known to be important in the striatum where a balance between dopamine and ACh release ensures normal motor output,<ref>Iversen SD.: Behavioural evaluation of cholinergic drug. Life Sciences 1997; 60: 1145-1152</ref> hippocampus and frontal cortex where ACh plays an important role in the regulation of consciousness, memory etc.
Der Lidschlussreflex wird durch einen Schlag auf den Augenbrauenbereich auf einer Seite der Stirn ausgelöst. Elektrophysiologisch ist es möglich, ihn durch Anwendung eines elektrischen Reizes auf den Augenbrauenbogen in Höhe des Supraorbitalforamens hervorzurufen. Die Reaktionen werden durch zwei Oberflächenelektroden auf dem M. orbicularis oculi auf jeder Seite aufgezeichnet, und die motorischen Potenziale können hauptsächlich durch zwei Ereignisse dargestellt werden, nämlich die ipsilaterale R1-Reaktion auf die Stimulation und die bilaterale R2-Reaktion. Diese Reaktionen stellen eine monosynaptische und polysynaptische Schaltung für R1 bzw. R2 dar. Die R1-Reaktion wurde angenommen, einem trigeminalen Pfad im Pons zu folgen, während die R2-Reaktion über einen Pfad in der Nähe der retikulären Formation die Gesichtskerne erreicht..<ref>Ongerboer de Visser BW, Kuypers HG (1978): Late blink reflex changes in lateral medullary lesions. An electrophysiological and neuro-anatomical study of Wallenberg's syndrome. ''Brain'' '''101''': 285-294. </ref><ref>Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. ''Advances in neurology''. New York: Raven Press. p 757-772.</ref><ref>Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. ''Advances in neurology''. New York: Raven Press. p 757-772.</ref>


Propofol is thought to potentiate the inhibitory effect of GABAA receptors and to have a different action from barbiturates or benzodiazepines. An elegant study<ref>Kikuchi T, Wang Y, Sato K, Okumura F.: In vivo effects of propofol on aceylcholine release from the fronatl cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats</ref> carried out through intracerebral microdialysis in mice demonstrated that propofol, with doses of 50 mg/kg, decreased the release of ACh from the frontal cortex by 85%, by 72% by the hippocampus and by 19% by the striatum.
Die Hauptneuralschaltung des Lidschlussreflexes befindet sich im Hirnstamm, aber jüngste Arbeiten haben mit funktioneller Magnetresonanztomographie (fMRT) gezeigt, dass während des Lidschlussreflexes bei Menschen zwei Hauptbereiche im hinteren Lappen des Kleinhirnhemisphären, hauptsächlich auf der Seite ipsilateral zur Stimulation, aktiviert werden.<ref>Dimitrova A, Weber J, Maschke M, Elles HG, Kolb FP, Forsting M, Diener HC, Timmann D. Eyeblink-related areas in human cerebellum as shown by fMRI. Hum Brain Mapp. 2002 Oct;17(2):100-15.</ref>


===== Blink reflex =====
==== Experimenteller Ablauf ====
The blink is a reflex that is evoked by hitting the eyebrow region on one side of the forehead. Electrophysiologically it is possible to evoke it by applying an electrical stimulus on the eyebrow arch in correspondence with the supraorbital foramen. The responses are recorded through two surface electrodes positioned on the orbicularis oculi muscle on each side and the motor potentials can be mainly represented by two events, namely the ipsilateral R1 response to stimulation and the bilateral R2. These responses represent a monosynaptic and polysynaptic circuitry for R1 and R2 respectively. The R1 response was considered to follow a trigeminal pathway in the pons while the R2 via a pathway adjacent the reticular formation reaches the facial nuclei.<ref>Ongerboer de Visser BW, Kuypers HG (1978): Late blink reflex changes in lateral medullary lesions. An electrophysiological and neuro-anatomical study of Wallenberg's syndrome. ''Brain'' '''101''': 285-294. </ref><ref>Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. ''Advances in neurology''. New York: Raven Press. p 757-772.</ref><ref>Ongerboer de Visser BW (1983b): Comparative study of corneal and blink reflex latencies in patients with segmental or with cerebral lesions. In: Desmedt JE , editor. ''Advances in neurology''. New York: Raven Press. p 757-772.</ref>
Das Experiment bestand darin, gleichzeitig die Präsenz des Lidschlussreflexes (R1 und R2) und die EMG-Aktivität des linken Masseters mit einer Nadelelektrode während der Propofol-Infusion in Dosen von <math>2 mg/kg </math> zu überwachen, was eine leichte Dissoziation - Wachsamkeit und mit offenen Augen - verursachte. Auf diese Weise kann mit guter Annäherung festgestellt werden, dass das Medikament die mesenzephal-bulbären Funktionen freisetzte.  


The main neural circuitry of the blink reflex is located in the brainstem but recent work, using functional magnetic resonance imaging (fMRI), has demonstrated that two main areas in the posterior lobe of the cerebellar hemisphere, mainly on the side ipsilateral to the stimulation, are activated during the blink reflexes in humans.<ref>Dimitrova A, Weber J, Maschke M, Elles HG, Kolb FP, Forsting M, Diener HC, Timmann D. Eyeblink-related areas in human cerebellum as shown by fMRI. Hum Brain Mapp. 2002 Oct;17(2):100-15.</ref>
Die EMG-Reaktionen (Abb. 6) waren wie folgt: Beim Einbringen des Medikaments kam es zu einem kurzen bewussten Verlust der kortikalen Kontrolle, den Anästhesisten klinisch als vorübergehende Hypertonie kennen und der elektrophysiologisch zu einer Zunahme des Muskeltonus führt. In Abbildung 6 (Phase 1: die ersten beiden oberen Spuren) können wir den Anstieg der Entladungsfrequenz der motorischen Einheiten von etwa <math>\approxeq 23Hz </math>vor dem Experiment (Abb. 1B) auf etwa <math>\approxeq 75Hz </math> in Phase 1 beobachten. (Abb. 6, Spur 1 und 2 oben)  


==== Experimental procedure ====
Nach etwa <math>\approxeq 5 sec </math> scheint sich das Medikament in die kortikal-subkortikalen Bereiche verteilt zu haben, und dieser Effekt zeigt sich elektrophysiologisch durch eine Verlangsamung der EMG-Entladungsfrequenz (Abb. 6, Spuren 3 und 4, beginnend von oben). Nach weiteren etwa <math>\approxeq 6 sec </math> ist die Sättigung der kortikalen und vermutlich subkortikalen Bereiche vollständig, und es gibt eine vollständige Abwesenheit von EMG-Aktivität am linken Masseter (Abb. 6, Spuren 5, 6 und 7, beginnend von oben). Schließlich wird das Medikament nach etwa <math>\approxeq 6 sec </math>metabolisiert, nachdem die elektrische Stille eintritt, und gleichzeitig tritt die konstante EMG-Tonaktivität wieder mit etwa <math>\approxeq 23Hz </math> auf (Abb. 6, Spuren 8-14).  
The experiment consisted in simultaneously monitoring the presence of the blink relex (R1 and R2) and the EMG activity of the left masseter with a needle electrode at the time of Propofol infusion at doses of <math>2 mg/kg </math> which determined a slight dissociation - alert and with eyes open . In this way it can be stated, with a good approximation, that the drug released the mesencephalic-bulbar functions.  


The EMG responses (fig. 6) were as follows: upon introduction of the drug there was a brief conscious loss of cortical control, which anesthetists know clinically as transient hypertonicity and which electrophysiologically causes an increase in muscle tone. In figure 6 (phase 1: first two upper traces) we can observe the increase in the discharge frequency of the motor units ranging from <math>\approxeq 23Hz </math>, before the experiment (fig.1B), to <math>\approxeq 75Hz </math>  of phase 1.( Fig. 6, trace 1 and 2 above)
{{q2|Die interessantesten Daten stammten aus Phase 3, in der MUAP völlig fehlte, während der Blinzelreflex mit seinen R1- und R2-Komponenten noch auslösbar war. Dies würde den kortikalen und/oder subkortikalen Schrittmacher erklären, würde aber keine Hirnstammstrukturen betreffen.|}}


After <math>\approxeq 5 sec </math>  the drug seems to have distributed to the cortical-subcortical areas and this effect is manifested electrophysiologically with a slowing down of the EMG discharge frequency (fig. 6 traces 3 and 4 starting from the top). After others <math>\approxeq 6 sec </math>  the saturation of the cortical and, presumably, subcortical areas is complete and there is a total absence of EMG activity on the left masseter. (fig. 6 traces 5,6 and 7 starting from the top) Finally the drug is metabolised after<math>\approxeq 6 sec </math> from the electric silence and contextually the constant EMG tonic activity reappears at <math>\approxeq 23Hz </math> (fig.6 trace 8-14).{{q2|The most interesting data was in phase 3 in which there is the total absence of MUAP while the blink reflex was still evokeable with its R1 and R2 components. This would explain the cortical and/or subcortical pacemaker but would not involve brainstem structures.|}}


 
[[File:EMG Propofol.jpeg|center|thumb|600x600px|Abbildung 6: EMG-Ergebnis der experimentellen Verfahren. Zum besseren Verständnis folgen Sie dem Text]]
[[File:EMG Propofol.jpeg|center|thumb|600x600px|'''Figure 6:''' EMG result of the experimental procedures. For better understanding follow text]]


=== Conclusions ===
=== Conclusions ===
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,784

edits