Difference between revisions of "Physiologische Dynamik bei demyelinisierenden Krankheiten: Enträtseln komplexer Zusammenhänge durch Computermodellierung"

no edit summary
Tags: Mobile web edit Mobile edit Visual edit
Tags: Mobile web edit Mobile edit Visual edit
Line 179: Line 179:
Darüber hinaus ermöglichten diese vereinfachten Modelle die Anwendung mathematischer Werkzeuge zur Untersuchung der nichtlinearen Mechanismen, durch die AD initiiert und beendet wird.<ref name=":9" /><ref name=":10" /><ref name=":11" /> Bifurkationsanalysen zeigten die zugrunde liegende Bistabilität der Axonerregbarkeit unter pathologischen Bedingungen sowie die Faktoren, die den Übergang von einem Attraktorzustand zu einem anderen steuern. AD erfordert beispielsweise einen langsamen Einwärtsstrom, der zwei stabile Attraktorzustände ermöglicht, von denen einer der Ruhe und der andere dem wiederholten Spiking (einem Grenzzyklus) entspricht. Die Beendigung von AD wurde dadurch erklärt, dass der Attraktor, der mit wiederholtem Spiking verbunden ist, zerstört wird. Dies geschah, als eine ultralangsame negative Rückkopplung in Form einer intrazellulären Na+-Akkumulation die Zerstörung des Grenzzyklus-Attraktorzustands verursachte [58]. Andere Studien, die Bifurkationsanalysen verwenden, legen nahe, dass Änderungen der Ionenkonzentration eine langsame Dynamik einführen können, die für das Verständnis pathologischer Ergebnisse wichtig sein kann [94,109].<ref name=":19" /><ref>Yu N., Morris C.E., Joós B., Longtin A. Spontaneous excitation patterns computed for axons with injury-like impairments of sodium channels and Na/K pumps. PLoS Comput. Biol. 2012;8:e1002664. doi: 10.1371/journal.pcbi.1002664. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref>
Darüber hinaus ermöglichten diese vereinfachten Modelle die Anwendung mathematischer Werkzeuge zur Untersuchung der nichtlinearen Mechanismen, durch die AD initiiert und beendet wird.<ref name=":9" /><ref name=":10" /><ref name=":11" /> Bifurkationsanalysen zeigten die zugrunde liegende Bistabilität der Axonerregbarkeit unter pathologischen Bedingungen sowie die Faktoren, die den Übergang von einem Attraktorzustand zu einem anderen steuern. AD erfordert beispielsweise einen langsamen Einwärtsstrom, der zwei stabile Attraktorzustände ermöglicht, von denen einer der Ruhe und der andere dem wiederholten Spiking (einem Grenzzyklus) entspricht. Die Beendigung von AD wurde dadurch erklärt, dass der Attraktor, der mit wiederholtem Spiking verbunden ist, zerstört wird. Dies geschah, als eine ultralangsame negative Rückkopplung in Form einer intrazellulären Na+-Akkumulation die Zerstörung des Grenzzyklus-Attraktorzustands verursachte [58]. Andere Studien, die Bifurkationsanalysen verwenden, legen nahe, dass Änderungen der Ionenkonzentration eine langsame Dynamik einführen können, die für das Verständnis pathologischer Ergebnisse wichtig sein kann [94,109].<ref name=":19" /><ref>Yu N., Morris C.E., Joós B., Longtin A. Spontaneous excitation patterns computed for axons with injury-like impairments of sodium channels and Na/K pumps. PLoS Comput. Biol. 2012;8:e1002664. doi: 10.1371/journal.pcbi.1002664. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref>


==== Modeling at Small Scales ====
==== Modellierung im kleinen Maßstab ====
Studies mentioned above highlight the importance of ion concentration changes but each of them only considered those changes at a relatively course scale. By comparison, the study by Lorpreore et al.<ref>Lopreore C.L., Bartol T.M., Coggan J.S., Keller D.X., Sosinsky G.E., Ellisman M.H., Sejnowski T.J. Computational modeling of three-dimensional electrodiffusion in biological systems: Application to the node of Ranvier. Biophys. J. 2008;95:2624–2635. doi: 10.1529/biophysj.108.132167.</ref> tackled the daunting problem of modeling three-dimensional electro-diffusion of ion fluxes in micro and nano-domains surrounding ion channels at the node of Ranvier. In this unique model, the fluxes of ions are calculated by Poisson-Nernst-Planck equations with finite volume techniques. The fluxes and electric potentials were evaluated within voxels formed by a Delaunay-Voronoi mesh of the axon interior and exterior close to the membrane. Importantly, the algorithm was validated and results agreed with cable model predictions. Divergence from cable model predictions at smaller cluster sizes revealed the importance of each channel’s own electric field.
Die oben erwähnten Studien heben die Bedeutung von Änderungen der Ionenkonzentration hervor, aber jede von ihnen berücksichtigte diese Änderungen nur in einem relativ groben Maßstab. Die Studie von Lorpreore et al.<ref>Lopreore C.L., Bartol T.M., Coggan J.S., Keller D.X., Sosinsky G.E., Ellisman M.H., Sejnowski T.J. Computational modeling of three-dimensional electrodiffusion in biological systems: Application to the node of Ranvier. Biophys. J. 2008;95:2624–2635. doi: 10.1529/biophysj.108.132167.</ref>befassten sich mit dem entmutigenden Problem der Modellierung der dreidimensionalen Elektrodiffusion von Ionenflüssen in Mikro- und Nanodomänen, die Ionenkanäle am Knoten von Ranvier umgeben. In diesem einzigartigen Modell werden die Ionenflüsse durch Poisson-Nernst-Planck-Gleichungen mit Finite-Volumen-Techniken berechnet. Die Flüsse und elektrischen Potentiale wurden innerhalb von Voxeln bewertet, die durch ein Delaunay-Voronoi-Netz des Axons innerhalb und außerhalb der Membran gebildet wurden. Wichtig ist, dass der Algorithmus validiert wurde und die Ergebnisse mit den Vorhersagen des Kabelmodells übereinstimmten. Abweichungen von Kabelmodellvorhersagen bei kleineren Clustergrößen zeigten die Bedeutung des eigenen elektrischen Felds jedes Kanals.


The above example highlights the point that models can simulate more than ion channels and membrane potential. Indeed, models can and must dig deeper into biophysical mechanisms like electro-diffusion and into signaling pathways that ultimately serve to regulate ion channel function and expression. A promising method called Biochemical Systems Theory (BST) may be useful in the future for pre-screening the effects of drugs at the systemic level. Broome and Coleman<ref>Broome T.M., Cole.man R.A. A mathematical model of cell death in multiple sclerosis. J. Neurosci. Methods. 2011;201:420–425. doi: 10.1016/j.jneumeth.2011.08.008. [PubMed] [CrossRef] [Google Scholar]</ref> demonstrated the power of this technique by modeling several biochemical pathways in neurons associated with cell death during MS including reactive oxygen and nitrogen species formation, Ca2+ dynamics, death complex formation, apoptotic factor release, and inflammatory responses together with three different states: normal, MS disease and treatment. At the atomic-level, a computational model of myelin basic protein (MBP) structure was carried-out because post-translational modifications of MBP may contribute to demyelination in MS.<ref>Ridsdale R.A., Beniac D.R., Tompkins T.A., Moscarello M.A., Harauz G. Three-dimensional structure of myelin basic protein. II. Molecular modeling and considerations of predicted structures in multiple sclerosis. J. Biol. Chem. 1997;272:4269–4275. doi: 10.1074/jbc.272.7.4269. [PubMed] [CrossRef] [Google Scholar]</ref> It is important to understand its 3D structure to predict interaction sites with other molecules but a crystal structure for this protein might never be measured directly. This type of modeling may, therefore, represent an effective way to predict the structure by combining knowledge of amino acid sequence with information from similar proteins. The challenge for and the true power of modeling lies in connecting mechanisms that operate at vastly different scales, from molecular structure to the nervous system as a whole, and beyond, to address how the nervous system interacts with the immune system.
Das obige Beispiel unterstreicht den Punkt, dass Modelle mehr als Ionenkanäle und Membranpotential simulieren können. In der Tat können und müssen Modelle tiefer in biophysikalische Mechanismen wie Elektrodiffusion und in Signalwege eintauchen, die letztendlich dazu dienen, die Funktion und Expression von Ionenkanälen zu regulieren. Eine vielversprechende Methode namens Biochemical Systems Theory (BST) könnte in Zukunft nützlich sein, um die Wirkung von Arzneimitteln auf systemischer Ebene vorab zu überprüfen. Broome und Coleman<ref>Broome T.M., Cole.man R.A. A mathematical model of cell death in multiple sclerosis. J. Neurosci. Methods. 2011;201:420–425. doi: 10.1016/j.jneumeth.2011.08.008. [PubMed] [CrossRef] [Google Scholar]</ref> demonstrierten die Leistungsfähigkeit dieser Technik durch die Modellierung mehrerer biochemischer Wege in Neuronen, die mit dem Zelltod während MS in Verbindung stehen, einschließlich der Bildung reaktiver Sauerstoff- und Stickstoffspezies, der Ca2+-Dynamik, der Bildung von Todeskomplexen, der Freisetzung von apoptotischen Faktoren und Entzündungsreaktionen zusammen mit drei verschiedenen Zuständen: normal, MS Krankheit und Behandlung. Auf atomarer Ebene wurde ein Computermodell der Struktur des Myelin-Basisproteins (MBP) durchgeführt, da posttranslationale Modifikationen von MBP zur Demyelinisierung bei MS beitragen können.<ref>Ridsdale R.A., Beniac D.R., Tompkins T.A., Moscarello M.A., Harauz G. Three-dimensional structure of myelin basic protein. II. Molecular modeling and considerations of predicted structures in multiple sclerosis. J. Biol. Chem. 1997;272:4269–4275. doi: 10.1074/jbc.272.7.4269. [PubMed] [CrossRef] [Google Scholar]</ref>Es ist wichtig, seine 3D-Struktur zu verstehen, um Interaktionsstellen mit anderen Molekülen vorherzusagen, aber eine Kristallstruktur für dieses Protein könnte niemals direkt gemessen werden. Diese Art der Modellierung kann daher einen effektiven Weg darstellen, um die Struktur vorherzusagen, indem das Wissen über die Aminosäuresequenz mit Informationen von ähnlichen Proteinen kombiniert wird. Die Herausforderung und die wahre Stärke der Modellierung liegt in der Verbindung von Mechanismen, die auf sehr unterschiedlichen Ebenen ablaufen, von der molekularen Struktur bis zum Nervensystem als Ganzes und darüber hinaus, um zu untersuchen, wie das Nervensystem mit dem Immunsystem interagiert.


Models of Immune Factors. While there are numerous computational models of the immune system,<ref>Pigozzo A.B., Macedo G.C., Santos R.W., Lobosco M. On the computational modeling of the innate immune system. BMC Bioinform. 2013;14 doi: 10.1186/1471-2105-14-S6-S7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> those related to MS typically model genetic interaction networks, either represented as sets of ordinary differential equations (ODEs) or Boolean networks. One systems biology model of a possible cellular mechanism of RRMS found breakdown in homeostasis of effector (Teff) and regulatory T (Treg) cells.<ref>Doerck S., Göbel K., Weise G., Schneider-Hohendorf T., Reinhardt M., Hauff P., Schwab N., Linker R., Mäurer M., Meuth S.G., et al. Temporal pattern of ICAM-I mediated regulatory T cell recruitment to sites of inflammation in adoptive transfer model of multiple sclerosis. PLoS ONE. 2010;5:e15478. doi: 10.1371/journal.pone.0015478. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref><ref>De Mendizábal N.V., Carneiro J., Solé R.V., Goñi J., Bragard J., Martinez-Forero I., Martinez-Pasamar S., Sepulcre J., Torrealdea J., Bagnato F., et al. Modeling the effector-regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis. BMC Syst. Biol. 2011;5doi: 10.1186/1752-0509-5-114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> By changing parameters in the Teff-Treg feedback loop, under continual stochastic external stimulus from antigens, the model reproduced spontaneous and apparently stochastic immune relapses. The irreversible damage from each episode accumulates over time. Novel predictions include the suggestion that the timing of Treg immunotherapy in the immune response cycle is critical in determining whether intervention is beneficial or deleterious.
Modelle von Immunfaktoren. Zwar gibt es zahlreiche Computermodelle des Immunsystems,<ref>Pigozzo A.B., Macedo G.C., Santos R.W., Lobosco M. On the computational modeling of the innate immune system. BMC Bioinform. 2013;14 doi: 10.1186/1471-2105-14-S6-S7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> diejenigen, die sich auf MS beziehen, modellieren typischerweise genetische Interaktionsnetzwerke, die entweder als Sätze gewöhnlicher Differentialgleichungen (ODEs) oder als Boolesche Netzwerke dargestellt werden. Ein systembiologisches Modell eines möglichen zellulären Mechanismus von RRMS fand einen Zusammenbruch der Homöostase von Effektor (Teff) und regulatorischen T (Treg) Zellen.<ref>Doerck S., Göbel K., Weise G., Schneider-Hohendorf T., Reinhardt M., Hauff P., Schwab N., Linker R., Mäurer M., Meuth S.G., et al. Temporal pattern of ICAM-I mediated regulatory T cell recruitment to sites of inflammation in adoptive transfer model of multiple sclerosis. PLoS ONE. 2010;5:e15478. doi: 10.1371/journal.pone.0015478. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref><ref>De Mendizábal N.V., Carneiro J., Solé R.V., Goñi J., Bragard J., Martinez-Forero I., Martinez-Pasamar S., Sepulcre J., Torrealdea J., Bagnato F., et al. Modeling the effector-regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis. BMC Syst. Biol. 2011;5doi: 10.1186/1752-0509-5-114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]</ref> Durch die Änderung von Parametern in der Teff-Treg-Rückkopplungsschleife reproduzierte das Modell unter kontinuierlichem stochastischen externen Stimulus von Antigenen spontane und scheinbar stochastische Immunrückfälle. Der irreversible Schaden aus jeder Episode sammelt sich im Laufe der Zeit an. Zu den neuartigen Vorhersagen gehört der Vorschlag, dass der Zeitpunkt der Treg-Immuntherapie im Immunreaktionszyklus entscheidend dafür ist, ob eine Intervention vorteilhaft oder schädlich ist.


Models of Mitochondrial Dysfunction. As mentioned above, myelin enables more energy efficient AP conduction along the axon. The increased energy demands placed on the demyelinated axon represents yet another challenge to the afflicted neuron. Beyond the loss of saltatory conduction, there is mounting evidence of a critical role for astrocytes and oligodendrocytes in supplying energy to neurons and this process has also been the subject of computational modeling.<ref>Jolivet R., Coggan J.S., Allaman I., Magistretti P.J. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Comput. Biol. 2015;11:e1004036. doi: 10.1371/journal.pcbi.1004036. [PMC free article] [PubMed] [CrossRef]</ref>
Modelle der mitochondrialen Dysfunktion. Wie oben erwähnt, ermöglicht Myelin eine energieeffizientere AP-Leitung entlang des Axons. Der erhöhte Energiebedarf, der an das demyelinisierte Axon gestellt wird, stellt eine weitere Herausforderung für das betroffene Neuron dar. Über den Verlust der Salzleitung hinaus gibt es zunehmend Hinweise auf eine entscheidende Rolle von Astrozyten und Oligodendrozyten bei der Energieversorgung von Neuronen, und dieser Prozess war auch Gegenstand von Computermodellen.<ref>Jolivet R., Coggan J.S., Allaman I., Magistretti P.J. Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Comput. Biol. 2015;11:e1004036. doi: 10.1371/journal.pcbi.1004036. [PMC free article] [PubMed] [CrossRef]</ref>


There are many ways mitochondrial function can go awry and the compensatory pathways are equally complicated.<ref name=":8" /><ref name=":12" /><ref name=":13" /> For example, mitochondrial dysfunction can be rooted in perturbed Ca2+ signaling within mitochondria, disrupted proton gradients or electron chain, reduction-oxidation imbalance as well as the consequences of reduced ATP availability, locally and globally. Multi-scale models of heart, for example, have been used to link altered mitochrondrial Ca2+ signaling to arrhythmia [60]. Using mitochondrial network modeling, this study demonstrated how even slightly too much reactive oxygen species can trigger a cell-wide collapse of mitochondrial membrane potential. This is an excellent example of how a computational model can link processes occurring at different levels, and it is precisely these linkages that must be established in the field of demyelination diseases.
Es gibt viele Möglichkeiten, wie die mitochondriale Funktion schief gehen kann, und die kompensatorischen Wege sind ebenso kompliziert.<ref name=":8" /><ref name=":12" /><ref name=":13" />Beispielsweise kann eine mitochondriale Dysfunktion in einer gestörten Ca2+-Signalübertragung innerhalb der Mitochondrien, gestörten Protonengradienten oder Elektronenketten, einem Reduktions-Oxidations-Ungleichgewicht sowie den Folgen einer reduzierten ATP-Verfügbarkeit, lokal und global, verwurzelt sein. Beispielsweise wurden Multiskalenmodelle des Herzens verwendet, um eine veränderte mitochondriale Ca2+-Signalübertragung mit Arrhythmie in Verbindung zu bringen [60]. Unter Verwendung von mitochondrialen Netzwerkmodellen zeigte diese Studie, wie sogar etwas zu viele reaktive Sauerstoffspezies einen zellweiten Zusammenbruch des mitochondrialen Membranpotentials auslösen können. Dies ist ein hervorragendes Beispiel dafür, wie ein Computermodell Prozesse auf verschiedenen Ebenen verknüpfen kann, und genau diese Verknüpfungen müssen im Bereich der Demyelinisierungskrankheiten hergestellt werden.


=== Missing Links and the Need for Integration ===
=== Missing Links and the Need for Integration ===
Editor, Editors, USER, editor, translator
5,845

edits