Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,784
edits
Line 24: | Line 24: | ||
Nella formulazione di von Neumann, le proprietà statistiche di qualsiasi misura di un osservabile sono determinate in modo univoco dalla regola di Born (5) e dal postulato della proiezione (6), e sono rappresentate dalla mappa (9), uno strumento di tipo von Neumann. Tuttavia, la formulazione di von Neumann non riflette il fatto che lo stesso osservabile <math>A</math> rappresentato dall'operatore hermitiano <math>\hat{A}</math> può essere misurato in molti modi.(8) Formalmente, tali schemi di misurazione sono rappresentati da strumenti quantistici. | Nella formulazione di von Neumann, le proprietà statistiche di qualsiasi misura di un osservabile sono determinate in modo univoco dalla regola di Born (5) e dal postulato della proiezione (6), e sono rappresentate dalla mappa (9), uno strumento di tipo von Neumann. Tuttavia, la formulazione di von Neumann non riflette il fatto che lo stesso osservabile <math>A</math> rappresentato dall'operatore hermitiano <math>\hat{A}</math> può essere misurato in molti modi.(8) Formalmente, tali schemi di misurazione sono rappresentati da strumenti quantistici. | ||
Consideriamo ora i più semplici strumenti quantistici di tipo non von Neumann, noti come ''strumenti atomici''. Iniziamo ricordando la nozione di POVM (Probability Operator Valued Measure); limitiamo le considerazioni ai POVM con un dominio discreto di definizione <math display="inline">X=\{x_1....,x_N.....\}</math>. POVM è una mappa <math display="inline">x\rightarrow \hat{D}(x)</math> tale che per ogni <math display="inline">x\in X</math>,<math>\hat{D}(x)</math> è un operatore Hermitiano contrattivo positivo (chiamato ''effetto'') (ovvero <math display="inline">\hat{D}(x)^*=\hat{D}(x), 0\leq \langle\psi|\hat{D}(x)\psi\rangle\leq1</math> o qualsiasi <math display="inline">\psi\in\mathcal{H}</math>) e la condizione di normalizzazione | Consideriamo ora i più semplici strumenti quantistici di tipo non von Neumann, noti come ''strumenti atomici''. Iniziamo ricordando la nozione di POVM (Probability Operator Valued Measure); limitiamo le considerazioni ai POVM con un dominio discreto di definizione <math display="inline">X=\{x_1....,x_N.....\}</math>. POVM è una mappa <math display="inline">x\rightarrow \hat{D}(x)</math> tale che per ogni <math display="inline">x\in X</math>,<math>\hat{D}(x)</math> è un operatore Hermitiano contrattivo positivo (chiamato ''effetto'') (ovvero <math display="inline">\hat{D}(x)^*=\hat{D}(x), 0\leq \langle\psi|\hat{D}(x)\psi\rangle\leq1</math> o qualsiasi <math display="inline">\psi\in\mathcal{H}</math>) e la condizione di normalizzazione <math display="inline">\sum_x \hat{D}(x)=I</math>, dove <math display="inline">I</math> è l'operatore di unità. Si presume che per qualsiasi misurazione, la distribuzione di probabilità di output <math display="inline">Pr\{\text{x}=x||\rho\}</math> sia data da | ||
<math display="inline">\sum_x \hat{D}(x)=I</math>, dove <math display="inline">I</math> è l'operatore di unità. Si presume che per qualsiasi misurazione, la distribuzione di probabilità di output <math display="inline">Pr\{\text{x}=x||\rho\}</math> sia data da | |||
{| width="80%" | | {| width="80%" | | ||
|- | |- |
edits