Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,119
edits
Gianfranco (talk | contribs) (Created page with "==Fuzzy set <math>\tilde{A}</math> and membership function <math>\mu_{\displaystyle {\tilde {A}}}(x)</math>== We choose - as a formalism - to represent a fuzzy set with the 'tilde':<math>\tilde{A}</math>. A fuzzy set is a set where the elements have a 'degree' of belonging (consistent with fuzzy logic): some can be included in the set at 100%, others in lower percentages. To mathematically represent this degree of belonging is the function <math>\mu_{\displaystyle {\til...") |
|||
Line 1: | Line 1: | ||
== | ==Conjunto difuso <math>\tilde{A}</math> y función de pertenencia <math>\mu_{\displaystyle {\tilde {A}}}(x)</math>== | ||
Elegimos, como formalismo, representar un conjunto borroso con la 'tilde': <math>\tilde{A}</math> Un conjunto borroso es un conjunto donde los elementos tienen un 'grado' de pertenencia (de acuerdo con la lógica borrosa): algunos pueden incluirse en el conjunto en 100%, otros en porcentajes menores. | |||
Para representar matemáticamente este grado de pertenencia se encuentra la función <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> denominada ''''Función de pertenencia'''<nowiki/>'. La función <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> es una función continua definida en el intervalo <math>[0;1]</math> donde es: | |||
*<math>\mu_ {\tilde {A}}(x) = 1\rightarrow </math> | *<math>\mu_ {\tilde {A}}(x) = 1\rightarrow </math> si <math>x</math> está totalmente contenido en <math>A</math> (estos puntos se llaman ''''núcleo'''<nowiki/>', indican valores predicados <u>plausibles</u>). | ||
*<math>\mu_ {\tilde {A}}(x) = 0\rightarrow </math> | *<math>\mu_ {\tilde {A}}(x) = 0\rightarrow </math>si <math>x</math> no está contenido en <math>A</math> | ||
*<math>0<\mu_ {\tilde {A}}(x) < 1 \;\rightarrow </math> | *<math>0<\mu_ {\tilde {A}}(x) < 1 \;\rightarrow </math>si <math>x</math> está parcialmente contenido en <math>A</math> (estos puntos se llaman ''''soporte'''<nowiki/>', indican los <u>posibles</u> valores predicados). | ||
La representación gráfica de la función <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> puede ser variado; desde los de líneas lineales (triangulares, trapezoidales) hasta los que tienen forma de campana o 'S' (sigmoidales) como se muestra en la Figura 1, que contiene todo el concepto gráfico de la función de pertenencia....<ref>{{Cite book | |||
| autore = Zhang W | | autore = Zhang W | ||
| autore2 = Yang J | | autore2 = Yang J | ||
Line 53: | Line 53: | ||
[[File:Fuzzy_crisp.svg|alt=|left|thumb|400px|'''Figure 1:''' Types of graphs for the membership function.]] | [[File:Fuzzy_crisp.svg|alt=|left|thumb|400px|'''Figure 1:''' Types of graphs for the membership function.]] | ||
.<ref name=":0">•SMUTS J.C. 1926, [[wikipedia:Holism_and_Evolution|<!--139-->Holism and Evolution]], London: Macmillan.</ref> | |||
Let us go back to the specific case of our Mary Poppins, in which we see a discrepancy between the assertions of the dentist and the neurologist and we look for a comparison between classical logic and fuzzy logic: | Let us go back to the specific case of our Mary Poppins, in which we see a discrepancy between the assertions of the dentist and the neurologist and we look for a comparison between classical logic and fuzzy logic: | ||
[[File:Fuzzy1.jpg|thumb|400x400px|'''<!--141-->Figure 2:''' <!--142-->Representation of the comparison between a classical and fuzzy ensemble.]] | [[File:Fuzzy1.jpg|thumb|400x400px|'''<!--141-->Figure 2:''' <!--142-->Representation of the comparison between a classical and fuzzy ensemble.]] | ||
'''Figure 2:''' Let us imagine the Science Universe <math>U</math | '''Figure 2:''' Let us imagine the Science Universe <math>U</math> in which there are two parallel worlds or contexts, <math>{A}</math> and <math>\tilde{A}</math>. | ||
<math>{A}=</math> In the scientific context, the so-called ‘crisp’, and we have converted into ''the logic'' of ''Classic Language'', in which the physician has an absolute scientific background information <math>KB</math> | <math>{A}=</math> In the scientific context, the so-called ‘crisp’, and we have converted into ''the logic'' of ''Classic Language'', in which the physician has an absolute scientific background information <math>KB</math> with a clear dividing line that we have named <math>KB_c</math>. | ||
<math>\tilde{A}=</math> In another scientific context called ‘fuzzy logic’, and in which there is a union between the subset <math>{A}</math | <math>\tilde{A}=</math> In another scientific context called ‘fuzzy logic’, and in which there is a union between the subset <math>{A}</math> in <math>\tilde{A}</math> that we can go so far as to say: union between <math>KB_c</math>. | ||
We will remarkably notice the following deductions: | We will remarkably notice the following deductions: |
edits