Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,784
edits
Line 25: | Line 25: | ||
* '''Input:''' By incoming trigger we mean the cognitive process that the clinician implements as a function of the considerations received from previous statements, as has been pointed out in the chapters concerning the 'Medical language logic'. In our case, through the 'Consistency Demarcator <math>\tau</math>, the neurological context was defined as suitable instead of the dental one pursuing a clinical diagnostic explanation of TMDs. This trigger is of essential importance because it allows the clinician to center the network analysis initiation command which will connect a large sample of data corresponding to the set trigger. To this essential initial command, as an algorithmic decryption key, is added the last closing command which is equally important as it depends on the intuition of the clinician who will consider the decryption process finished. In Figure 1, the structure of the 'RNC' is represented in which the difference between the more common neural network structures in which the first stage is structured with a high number of input variables can be noted. In our 'RNC' the first stage corresponds only to a node and precisely to the network analysis initialization command called 'Consistency Demarcator <math>\tau</math>', the subsequent loops of the network, which allow the clinician to terminate or to reiterate the network, (1st loop open, 2st loop open,...... nst loop open) are decisive for concluding the decryption process ( Decrypted Code ). This step will be explained in more detail later in the chapter. | * '''Input:''' By incoming trigger we mean the cognitive process that the clinician implements as a function of the considerations received from previous statements, as has been pointed out in the chapters concerning the 'Medical language logic'. In our case, through the 'Consistency Demarcator <math>\tau</math>, the neurological context was defined as suitable instead of the dental one pursuing a clinical diagnostic explanation of TMDs. This trigger is of essential importance because it allows the clinician to center the network analysis initiation command which will connect a large sample of data corresponding to the set trigger. To this essential initial command, as an algorithmic decryption key, is added the last closing command which is equally important as it depends on the intuition of the clinician who will consider the decryption process finished. In Figure 1, the structure of the 'RNC' is represented in which the difference between the more common neural network structures in which the first stage is structured with a high number of input variables can be noted. In our 'RNC' the first stage corresponds only to a node and precisely to the network analysis initialization command called 'Consistency Demarcator <math>\tau</math>', the subsequent loops of the network, which allow the clinician to terminate or to reiterate the network, (1st loop open, 2st loop open,...... nst loop open) are decisive for concluding the decryption process ( Decrypted Code ). This step will be explained in more detail later in the chapter. | ||
[[File:Immagine 17-12-22 alle 11.34.jpeg|center|500x500px|'''Figure 1:'''Graphical representation of the 'RNC' proposed by Masticationpedia|thumb]] | |||
[[File:Immagine 17-12-22 alle 11.34.jpeg|center|500x500px|''' | |||
Line 36: | Line 35: | ||
<blockquote><math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2) | <blockquote><math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2) | ||
P(B=\beta|a=\alpha_2)</math> and let us imagine, letting our minds wander, that this formula corresponds to the message of the Central Nervous System, as we have anticipated, and in particular in the 'Ephaptic Transmission' still to be decrypted</blockquote>The computer and therefore the brain, for our metaphorical example, does not know verbal language or rather it is only a convention generated to simplify natural communication, rather it has its own one with which to write the formula mentioned and in the wiki text language (with extension .php) looks like this, represented in figure 2: <blockquote>[[File:Codice mod.png|alt=|center|frame|'''Figura 2:''' Wiki | P(B=\beta|a=\alpha_2)</math> and let us imagine, letting our minds wander, that this formula corresponds to the message of the Central Nervous System, as we have anticipated, and in particular in the 'Ephaptic Transmission' still to be decrypted</blockquote>The computer and therefore the brain, for our metaphorical example, does not know verbal language or rather it is only a convention generated to simplify natural communication, rather it has its own one with which to write the formula mentioned and in the wiki text language (with extension .php) looks like this, represented in figure 2: <blockquote>[[File:Codice mod.png|alt=|center|frame|'''Figura 2:''' Wiki text of a mathematical formula. Note the initialization <nowiki><math> command and the script exit </math></nowiki> command]] | ||
as you can see it has nothing to do with verbal language and in fact, the brain has its own machine language made up not of vowels, consonants and numbers but of action potentials, wave packets, frequencies and amplitudes, electric populations , etc. what we simply observe in an electroencephalographic tracing (EEG) and which represents, precisely, the electromagnetic fields on the scalp of the activity of the dipoles and the cerebral ionic currents that propagate in the encephalic volume. </blockquote> | as you can see it has nothing to do with verbal language and in fact, the brain has its own machine language made up not of vowels, consonants and numbers but of action potentials, wave packets, frequencies and amplitudes, electric populations , etc. what we simply observe in an electroencephalographic tracing (EEG) and which represents, precisely, the electromagnetic fields on the scalp of the activity of the dipoles and the cerebral ionic currents that propagate in the encephalic volume. </blockquote> | ||
Line 55: | Line 54: | ||
Just as the lack of part of the binary code corrupts the representation of the formula, similarly the decryption of the machine language of the CNS is a source of vagueness and ambiguity of the verbal language and contextually of diagnostic error. | Just as the lack of part of the binary code corrupts the representation of the formula, similarly the decryption of the machine language of the CNS is a source of vagueness and ambiguity of the verbal language and contextually of diagnostic error. | ||
=== Cognitive process === | === Cognitive process === | ||
---- | ----The heart of the 'RNC' model lies in the cognitive process referred exclusively to the clinician who is at the helm while the network essentially remains the compass that warns of off course and/or suggests other alternative routes but the decision-making responsibility always refers to the clinician ( human mind). In this simple definition, we will perceive it better at the end of the chapter, the synergism 'Neural network' and 'Human cognitive process' of the clinician will be self-implementing because on the one hand the clinician is trained or better guided by the neural network (database) and this The last one will be trained on the latest updated scientific-clinical event. Basically, the definitive diagnosis will add an additional piece of information to the temporal base knowledge <math>Kb_t</math>. This model differs substantially from 'machine learning' just by observing the two models in their structural configuration (Figures 1 and 3). | ||
[[File:Joim12822-fig-0004-m.jpeg|alt=|left|thumb|200x200px|''' | [[File:Joim12822-fig-0004-m.jpeg|alt=|left|thumb|200x200px|'''Figure 3:''' Graphic representation of an archetypal ANN in which it can be seen in the first stage of initialization where there are five input nodes<ref name=":1">G S Handelman, H K Kok, R V Chandra, A H Razavi, M J Lee, H Asadi. eDoctor: machine learning and the future of medicine.J Intern Med.2018 Dec;284(6):603-619.doi: 10.1111/joim.12822. Epub 2018 Sep 3.</ref> while in the 'RNC' model the first stage is composed of only one node. Follow text. ]]Figure 3 shows a typical neural network, also known as artificial NNs. These artificial NNs attempt to use multiple layers of calculations to mimic the concept of how the human brain interprets and draws conclusions from information.<ref name=":1" /> NNs are essentially mathematical models designed to handle complex and disparate information, and this algorithm's nomenclature comes from its use of synapse-like "nodes" in the brain.<ref>Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000; 19: 541–61.</ref> The learning process of a NN can be supervised or unsupervised. A neural network is said to learn in a supervised manner if the desired output is already targeted and introduced into the network by data training while unsupervised NN has no such pre-identified target outputs and the goal is to group similar units close together in certain areas of the range of values. The supervised module takes data (e.g., symptoms, risk factors, imaging and laboratory findings) for training on known outcomes and searches for different combinations to find the most predictive combination of variables. NN assigns more or less weight to certain combinations of nodes to optimize the predictive performance of the trained model.<ref>Abdi H. A neural network primer. J Biol Syst 1994; 02: 247–81.</ref> | ||
Figure 1, on the other hand, corresponds to the 'RNC' model proposed and it can be seen how the first stage of acquisition is composed of a single node while the 'Machine learning' at the first node, the more incoming variables have the greater the 'Prediction' in exit. As mentioned, it should be taken into account that the first node is of fundamental importance because it already derives from a clinical cognitive process that led the ' <math>\tau</math> Coherence Demarcator' to determine a first-ever choice of field. From the initialization command, therefore, the neural network evolves in a series of states composed of a large number of nodes and then terminates at a first step of one or two nodes and then reiterates in a subsequent loop of several nodes until ending in the 'last conclusive node (decryption of the code). The initialization process of the first node, the last and the reiteration of the loop is exclusive to the human cognitive process of the clinician and not to a statistical automatism of machine learning, much less 'Hidden' stages. All open and closed loops must be known to the clinician. | |||
For further information on the subject, it is available on Masticationpedia in the chapter '[[An artificially intelligent (or algorithm-enhanced) electronic medical record in orofacial pain]]' | |||
But let's see in detail how a 'RNC' is built | |||
== | == Cognitive Neural Network == | ||
In | In this paragraph it seems necessary to explain the clinical process followed with the support of the 'RNC' following step by step the cognitive queries to the network and the cognitive analysis performed on the data in response from the network. The map has also been shown in figure 4 with links to the network responses that can be viewed for more consistent documentation: | ||
* ''' | * '''Coherence Demarcator <math>\tau</math>:''' As we have previously described, the first stap is a network analysis initialization command that derives, in fact, from a previous cognitive processing of the assertions in the dental context <math>\delta_n</math> and the neurological one <math>\gamma_n</math> to which the ' <math>\tau</math> Coherence Demarcator' gave absolute weight by effectively eliminating the dental context <math>\delta_n</math> from the process . From what emerges from the neurological assertions <math>\gamma_n</math> the 'State' of the Trigeminal Nervous System appears unstructured highlighting anomalies of the trigeminal reflexes for which the 'Initialization' command is the '[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+&size=200 Trigeminal Reflex]' to go and test <nowiki/>the database (Pubmed). | ||
*<nowiki/><nowiki/>'''1<sup>st</sup> loop open:''' This 'Initialize' command, therefore, is considered as initial input for the Pubmed database which responds with 2,466 clinical and experimental data available to the clinician. The opening of the first true cognitive analysis is elaborated precisely on the analysis of the first result of the 'RNC' corresponding to 'Trigeminal Reflex'. In this phase we realize that a discrete percentage of data reveal a correspondence between trigeminal reflex abnormalities and demyelination problems, therefore the 1<sup>st</sup> loop open will correspond to: '[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+&size=200 Demyelinating neuropathy]<nowiki>''</nowiki> which will return 14 sensitive data. Behind the choice of this key there is an active and dynamic cognitive process of the clinician. From the assertions in the neurological context, a neuropathic pathology was hypothesized in which the demyelinating aspect should also be consid<nowiki/><nowiki/>ered. | |||
*'''2<sup>st</sup> loop o'''<nowiki/><nowiki/>'''pen:''' | *'''2<sup>st</sup> loop o'''<nowiki/><nowiki/>'''pen:''' The process continues by focusing in ever greater detail on the keywords that correspond to our electrophysiological anomalous result data, i.e. the latency of the jaw jerk. This input corresponds to '[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+latency Latency]' and returns 6 sensitive data on which to process a further iteration of the loop. | ||
*'''3<sup>st</sup> loop open:''' | *'''3<sup>st</sup> loop open:''' In the statements of the neurological context, an anomaly is also observed in the amplitude of the jaw jerk as well as in latency. This 3<sup>st</sup> open loop corresponds to '[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+latency+amplitude Amplitude]' and returns only 2 data points on which to dwell to decide the keyword to reiterate the loop or definitively close the process. The result shows an article describing the electrophysiological evaluation of cranial neuropathies that was considered of low specific weight for our purposes while the other article highlights some trigeminal methodologies to test latency, amplitude of masticatory muscles including H-reflex . | ||
*'''4<sup>st</sup> loop closed:''' | *'''4<sup>st</sup> loop closed:''' The process, therefore, continues by inserting the algorithmic keyword '[https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex H-reflex] ' which returns 3,701 clinical scientific data. | ||
*'''5<sup>st</sup> loop open:''' | *'''5<sup>st</sup> loop open:''' The anomalies highlighted were mainly verified on the masseters so it can be deduced that keywords concerning the '[https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex+masseter+muscle&size=200 Masseter muscle]' can be intercepted in the interrogated sample of the 4<sup>st</sup> closed loop, hence the 5<sup>st</sup> open loop which returns 30 data available for the 'RNC' | ||
*'''6<sup>st</sup> loop open:''' | *'''6<sup>st</sup> loop open:''' We, however, do not know whether the neuropathic damage is localized exclusively on the masseter muscle or also involves the temporal muscle, therefore another algorithmic keyword would be the '[https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex+masseter+muscle+temporal+muscle&size=200 Temporal muscle]' which returns 8 sensitive data. | ||
*'''7<sup>st</sup> loop open:''' Da una analisi acurata di questo 7<sup>st</sup> loop open ci si domanda se queste anomalie elettrofisiologiche possano essere evidenziate nei pazienti con sclerosis ed essendo presente nella storia clinica della paziente, una precedente diagnosi di 'Morfea' si è optato per interrogare la 'Rete' di un ulteriore keyword e focalizzata in 'Sclerosi' che ha dato un solo dato sensibile '[https://pubmed.ncbi.nlm.nih.gov/31164256/ H | *'''7<sup>st</sup> loop open:''' From a careful analysis of this 7th open loop one wonders if these electrophysiological anomalies can be highlighted in patients with sclerosis and being present in the patient's clinical history, a previous diagnosis of 'Morphea' it was opted to interrogate the 'Network' of a further keyword and focused on 'Sclerosis' which gave only one sensitive data 'heteronymous H-refex on the temporalis muscle in patients with Amyotrophic Lateral Sclerosis. | ||
*'''8<sup>st</sup> loop closed:''' In | *Da una analisi acurata di questo 7<sup>st</sup> loop open ci si domanda se queste anomalie elettrofisiologiche possano essere evidenziate nei pazienti con sclerosis ed essendo presente nella storia clinica della paziente, una precedente diagnosi di 'Morfea' si è optato per interrogare la 'Rete' di un ulteriore keyword e focalizzata in 'Sclerosi' che ha dato un solo dato sensibile '[https://pubmed.ncbi.nlm.nih.gov/31164256/ Heteronymous H reflex in temporal muscle as sign of hyperexcitability in ALS patients] | ||
*'''9<sup>st</sup> loop open:''' | *'''8<sup>st</sup> loop closed:''' In this single node the clinician could terminate the loop but would not have solved anything because the decoding of the encrypted message has not yet been achieved. It should be noted that the electrophysiological method called 'heteronomous H-reflex' is able to highlight response anomalies from the temporal muscle for which the loop was continued by inserting the following specific keyword, ' [https://pubmed.ncbi.nlm.nih.gov/?term=Temporal+muscle+abnormal+response&size=200 Temporal muscle abnormal response]' which returns 137 data. | ||
*'''9<sup>st</sup> loop open:''' By studying the 137 articles that appeared in Pubmed, the clinician intuits that the response abnormalities in the temporal muscle through the H-reflex test depend on a spread of the stimulus current in the unstructured arson and therefore further investigates the loop by interrogating the network for a further keyword the 'Lateral hope impulses' which definitively closes the cognitive process of the 'Neural Network' with a close article to our clinical hypotheses concerning the patient Mary Poppins and that is '[https://pubmed.ncbi.nlm.nih.gov/27072096/ '''Ephaptic transmission''' is the origin of the abnormal muscle response seen in hemifacial spasm]'<center>[[File:Immagine 17-12-22 alle 11.44.jpeg|center|600x600px|thumb|'''Figure 4:''' The active links of the 'RNC' highlighted in the template correspond to the 'Pubmed' database and can be documented.]] | |||
Line 82: | Line 83: | ||
<center></center> | <center></center> | ||
== | == Conclusion == | ||
As demonstrated, the definition of 'Emasticatory spasm' in our patient Mary Poppins was not a clinically simple process, however, considering the topics presented in the previous chapters of Masticationpedia we have at least three elements of support available: | |||
# | # A vision of 'Quantum Probability' of physical-chemical phenomena in complex biological systems which will be discussed extensively in the specific chapters. | ||
# | # A more formal and less vague language than the natural language that directs the diagnostic analysis to the first input node of the 'RNC' through the '<math>\tau</math> Coherence Demarcator' described in the chapter '[[1° Clinical case: Hemimasticatory spasm - en|1st Clinical case: Hemimasticatory spasm]]' | ||
# | # The 'RNC' process which, being managed and guided exclusively by the clinician, becomes an essential means for the definitive diagnosis. | ||
The 'RNC', in fact, is the result of a profound cognitive process that is performed on each step of the analysis in which the clinician weighs his intuitions, clarifies his doubts, evaluates the reports, considers the contexts and advances step by step confronting the result of the answer coming from the database which in our case is Pubmed which substantially represents the current level of basic knowledge <math>KB_t</math>at question time and the <math>KB_c</math> in the broadest specialist contexts. | |||
A linear representation of this cognitive process labeled as <math>RNC_1 </math>with the necessary annotations it could be the following:<blockquote> | |||
<math>RNC_1=\sum ( </math>[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+&size=200 Trigeminal Reflex],[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+&size=200 Demyelinating neuropathy], [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+latency Latency],[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+demyelinating+neuropathy+latency+amplitude Amplitude],[https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex '''H-reflex'''], [https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex+masseter+muscle&size=200 Masseter muscle], [https://pubmed.ncbi.nlm.nih.gov/?term=h+reflex+masseter+muscle+temporal+muscle&size=200 Temporal muscle], [https://pubmed.ncbi.nlm.nih.gov/31164256/ Heteronymous H reflex in temporal muscle as sign of hyperexcitability in ALS patients],[https://pubmed.ncbi.nlm.nih.gov/?term=Temporal+muscle+abnormal+response&size=200 Temporal muscle abnormal response]<math>)</math><math>\longrightarrow</math>[https://pubmed.ncbi.nlm.nih.gov/27072096/ '''Ephaptic transmission is the origin of the abnormal muscle response seen in hemifacial spasm''']</blockquote>There are essentially two annotations to note: the first is the mandatory identification of the initialization input that derives from the context chosen through the '<math>\tau</math> Coherence Demarcator' and the second the order of the cognitively selected keywords. | |||
{{Q2|In fact, what happens to the 'RNC' if we consider the dental context by inserting the keyword 'Temporomandibular Disorders' as an initialization input, keeping everything else unchanged?}} | |||
By marking the network as <math>RNC_2 </math> with a dental initialization input ( Temporomandibular disorders) as follows: | |||
<blockquote><math>RNC_2=\sum ( </math>[https://pubmed.ncbi.nlm.nih.gov/?term=Temporomandibular+disorders+&filter=dates.1970-2022 Temporomandibular Disorders],[https://pubmed.ncbi.nlm.nih.gov/?term=Temporomandibular+disorders+trigeminal+reflex&filter=dates.1970-2022 Trigeminal reflex], [https://pubmed.ncbi.nlm.nih.gov/?term=Temporomandibular+disorders+trigeminal+reflex+Demyelinatying+neuropathy&filter=dates.1970-2022 Demyelinaying neuropathy], [https://pubmed.ncbi.nlm.nih.gov/1520092/ Latency<math>\longrightarrow</math>'''Side asymmetry of the jaw jerk in human craniomandibular dysfunction''']</blockquote>The message is corrupted, as explained above regarding the mathematical formula, as the initialization command input ( Tempormandibular disorders) directs the network for a set of data, no less than 20,514, which lose connections with a part of subsets. While maintaining the rest of the RNC similar to the previous one (neurological context) the network stops at the keyword 'latency' showing only one scientific article which obviously concerns the latency of the jaw jerk but not related to neuropathic disorders. (figure 5) The error in the choice of the initialization command input of the <math>RNC </math> process not only corrupts the message to be decrypted but renders vain all the upstream work of analysis of the clinical assertions discussed in the chapters of language logic. | |||
[[File:Temporomandibular disorders trigeminal reflex demyelinatying neuropathy latency amplitude.jpg|center|thumb|''' | [[File:Temporomandibular disorders trigeminal reflex demyelinatying neuropathy latency amplitude.jpg|center|thumb|'''Figure 5:''' Ending the 'RNC' loop with an initialization input of 'Tempororomandibular Disorders']] | ||
However, changing the order of the keywords in an exact cognitive path such as the neurological one essentially returns the same results as the previous one provided that the initialization command input is perfectly centred, as can be seen in the following simulation labeled with <math>RNC_3 </math>: | |||
<math>RNC_3=\sum ( </math>[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+ Trigeminal reflex], [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude amplitude] [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude+latency latency] [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude+latency+Demyelinating+neuropathy demyelinating neuropathy] <math>\longrightarrow</math> [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude+latency+Demyelinating+neuropathy '''H-reflex''']................ | <math>RNC_3=\sum ( </math>[https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+ Trigeminal reflex], [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude amplitude] [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude+latency latency] [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude+latency+Demyelinating+neuropathy demyelinating neuropathy] <math>\longrightarrow</math> [https://pubmed.ncbi.nlm.nih.gov/?term=trigeminal+reflex+amplitude+latency+Demyelinating+neuropathy '''H-reflex''']................ | ||
and reconnects to the previous one until closing in the output 'Ephaptic transmission is the origin of the abnormal muscle response seen in hemifacial spasm' (Figure 6) | |||
[[File:Ephaptic trasmission.jpg|center|thumb|''' | [[File:Ephaptic trasmission.jpg|center|thumb|'''Figure 6:''' Process of 'RNC' with order of keywords changed. ]] | ||
Note that if this chapter had been published in an impacted international scientific journal (Inpact Factor) it would <math>KB_t</math>and contextually a hypothetical 'machine learning' would have been enriched with a new content or that of the diagnosis of 'Hemimasticatory spasm' defined following the electrophysiological method of the heteronymous H-reflex. This conclusion will come in handy when we repeat the same procedure for other clinical cases in which the <math>KB_t</math>is updated to the database output. | |||
To learn more about the methodological description of the 'Heteronimous H-Reflex', the reader is invited to follow [[Appendix 1]]. | |||
=== Bibliography === | === Bibliography === | ||
<references /> | <references /> |
edits