Difference between revisions of "Encrypted code: Ephaptic transmission"

no edit summary
Line 2: Line 2:
{{Template:Transl}}
{{Template:Transl}}


Il termine di '<nowiki/>'''Rete Neurale Cognitiva'''<nowiki/>'  abbreviata in ''''RNC'''' è un processo intellettuale cognitivo dinamico del clinico che interroga la rete per auto-addestrarsi. La 'RNC' non è una 'Machine Learning' perchè mentre quest'ultima deve essere addestrata dal clinico, con aggiustamenti statistici e di predizione, la 'RNC' addestra il clinico o meglio indirizza il clinico alla diagnosi pur essendo sempre interrogata seguendo una logica umana, da qui il termine 'cognitiva'. Come dimostrato la definizione di 'Spasmo Emimasticatorio' nella nostra paziente Mary Poppins non è stato un percorso clinicamente semplice, tuttavia, considerando i temi presentati nei capitoli precedente di Masticationpedia abbiamo a disposizione almeno tre elementi di supporto: una visione di 'Probabilità quantistica' dei fenomeni fisico chimici nei sistemi complessi biologici di cui si parlerà diffusamente nei capitoli specifici; un linguaggio più formale e meno vago rispetto al linguaggio naturale che indirizza l'analisi diagnostica al primo nodo di input della 'RNC' attraverso lo 'Demarcatore di Coerenza <math>\tau</math>' descritto nel capitolo [[1° Clinical case: Hemimasticatory spasm|'1° Clinical case: Hemimasticatory spasm]]; il processo della 'RNC' che essendo gestito e guidato esclusivamente dal clinico diviene un mezzo imprenscindibile per la diagnosi definitiva. La 'RNC', infatti, è il risultato di un profondo processo cognitivo che si esegue su ogni passaggio dell'analisi in cui il clinico pesa le proprie intuizioni, chiarisce i propri dubbi, valuta i referti, considera i contesti ed avanza step by step confrontandosi con il risultato della risposta proveniente dal database che nel nostro caso è Pubmed e che sostanzialmente rappresenta l'attuale livello di conoscenza di base <math>KB_t</math> al tempo dell'interrogazione ed il <math>KB_c</math> nei più ampi contesti specialistici.
The term 'Cognitive Neural Network' abbreviated to 'RNC' is a dynamic cognitive intellectual process of the clinician who interrogates the network for self-training. The 'RNC' is not a 'Machine Learning' because while the latter must be trained by the clinician, with statistical and prediction adjustments, the 'RNC' trains the clinician or rather directs the clinician to the diagnosis while always being questioned following a logical human, hence the term 'cognitive'. As demonstrated, the definition of 'Emasticatory spasm' in our patient Mary Poppins was not a clinically simple process, however, considering the themes presented in the previous chapters of Masticationpedia we have at least three supporting elements available: a vision of 'Quantum Probability' of physical-chemical phenomena in complex biological systems which will be discussed extensively in the specific chapters; a more formal and less vague language than the natural language which directs the diagnostic analysis to the first input node of the 'RNC' through the '<math>\tau</math> Coherence Demarcator' described in the chapter '[[1° Clinical case: Hemimasticatory spasm - en|1st Clinical case: Hemimasticatory spasm]]'; the 'RNC' process which, being managed and guided exclusively by the clinician, becomes an essential means for the definitive diagnosis. The 'RNC', in fact, is the result of a profound cognitive process that is performed on each step of the analysis in which the clinician weighs his intuitions, clarifies his doubts, evaluates the reports, considers the contexts and advances step by step confronting the result of the answer coming from the database which in our case is Pubmed and which substantially represents the current level of basic knowledge <math>KB_t</math> at the time of the query and <math>KB_c</math> in the broader specialist contexts.
 
 
  {{ArtBy|
 
{{ArtBy|
| autore = Gianni Frisardi
| autore = Gianni Frisardi
| autore2 = Flavio Frisardi
| autore2 = Flavio Frisardi
Line 12: Line 13:
{{Bookind2}}
{{Bookind2}}


== Intr<nowiki/>oduzione ==
== Introduction ==
Nel capitolo<nowiki/> '[[1° Clinical case: Hemimasticatory spasm]]' siamo giunti subito a conclusione bypassando tutto il processo cognitivo, clinico e scientifico che è alla base della definizione diagnostica ma non è così semplice altrimenti la nostra povera paziente Mary Poppins non avrebbe dovuto aspettare 10 anni per la diagnosi corretta.<blockquote>Va rimarcato che non si tratta di negligenza da parte dei clinici piuttosto di complessità dei 'Sistemi Complessi biologici' e soprattutto da una forma mentis ancorata, ancora, ad una 'Probabilità classiche' che categorizza i fenotipi sani e malati in funzione dei sintomi e segni clinici campionati invece di sondare lo 'Stato' di sistema nell'evoluzione temporale. Questo concetto, anticipato nel capitolo '[[Logic of medical language: Introduction to quantum-like probability in the masticatory system]]' ed in '[[Conclusions on the status quo in the logic of medical language regarding the masticatory system]]' ha gettato le basi per un linguaggio medico più articolato e meno deterministico, focalizzato principalmente sullo 'Stato' di 'Sistema mesoscopico' il cui scopo è, essenzialmente, quello di decriptare il messaggio in linguaggio macchina generato dal Sistema Nervoso Centrale come assisteremo nella descrizione di altri casi clinici che verranno riportati nei prossimi capitoli di Masticationpedia. </blockquote>Questo modello, che proponiamo con il termine di ''''Rete Neurale Cognitiva'''<nowiki/>'  abbreviata in ''''RNC'''' è un processo intellettuale cognitivo dinamico del clinico che interroga la rete per auto-addestrarsi. La 'RNC' non è una 'Machine Learning' perchè mentre quest'ultima deve essere addestrata dal clinico, con aggiustamenti statistici e di predizione, la 'RNC' addestra il clinico o meglio indirizza il clinico alla diagnosi pur essendo sempre interrogata seguendo una logica umana, da qui il termine 'cognitiva'.
In the chapter '[[1° Clinical case: Hemimasticatory spasm - en|1st Clinical case: Hemimasticatory spasm]]' we immediately reached a conclusion bypassing all the cognitive, clinical and scientific process which underlies the diagnostic definition but it is not that simple otherwise our poor patient Mary Poppins would not have had to wait 10 years for the correct diagnosis.<blockquote>It should be emphasized that it is not a question of negligence on the part of clinicians rather of the complexity of 'biological complex systems' and above all of a mindset still anchored to a 'classical probability' which categorizes healthy and diseased phenotypes according to symptoms and signs sampled clinicians instead of probing the 'State' of the system in the temporal evolution. This concept, anticipated in the chapter '[[Logic of medical language: Introduction to quantum-like probability in the masticatory system]]' and in '[[Conclusions on the status quo in the logic of medical language regarding the masticatory system]]' has laid the foundations for a medical language more articulated and less deterministic, mainly focused on the 'State' of the 'Mesoscopic System' whose purpose is, essentially, to decrypt the message in machine language generated by the Central Nervous System as we will assist in the description of other clinical cases that will be reported in the next Masticationpedia chapters. </blockquote>This model, which we propose with the term 'Cognitive Neural Network' abbreviated as 'RNC' is a dynamic cognitive intellectual process of the clinician who interrogates the network for self-training. The 'RNC' is not a 'Machine Learning' because while the latter must be trained by the clinician, with statistical and prediction adjustments, the 'RNC' trains the clinician or rather directs the clinician to the diagnosis while always being questioned following a logical human, hence the term 'cognitive'.


Alcuni modelli di '''machine learning classici,''' infatti, il cui '''addestramento in laboratorio''' dà risultati positivi, falliscono applicati al '''contesto reale'''. Questo, in genere, è attribuito a una mancata corrispondenza tra i set di dati con i quali la macchina è stata addestrata e i dati che, invece, incontra nel mondo reale. Un esempio pratico di ciò può essere rappresentato dal conflitto di asserzioni incontrato nel processo diagnostico della nostra paziente Mary Poppins tra il contesto odontoiatrico e neurologico che solo il supporto del demarcatore di coerenza <math>\tau</math> (processo cognitivo) è riuscito a risolvere.
In fact, some classic machine learning models, whose training in the laboratory gives positive results, fail when applied to the real context. This is typically attributed to a mismatch between the datasets the machine was trained with and the data it encounters in the real world. A practical example of this can be represented by the conflict of assertions encountered in the diagnostic process of our patient Mary Poppins between the dental and neurological context which only the support of the coherence demarcator <math>\tau</math>(cognitive process) managed to solve.


Uno dei limiti del machine learning, dunque, è noto come “'''data shift'''”,<ref>Jérôme Dockès, Gaël Varoquaux, Jean-Baptiste Poline. Preventing dataset shift from breaking machine-learning biomarkers.GigaScience, Volume 10, Issue 9, September 2021, giab055,</ref> ovvero “'''spostamento dei dati'''” ed un’altra causa alla base del fallimento di alcuni modelli fuori dal laboratorio, è la “'''sottospecificazione'''“<ref>Alexander D’Amour et al. Underspecification Presents Challenges for Credibility in Modern Machine Learning. Journal of Machine Learning Research 23 (2022) 1-61,Submitted 11/20; Revised 12/21; Published 08/22</ref><ref>Damien Teney, Maxime Peyrard, Ehsan Abbasnejad. Predicting Is Not Understanding: Recognizing and Addressing Underspecification in Machine Learning.ECCV 2022: Computer Vision – ECCV 2022 pp 458–476Cite as</ref> tanto è vero che il tentativo di costruire un sistema EMR ( cartella clinica elettronica) potenziato con algoritmo progettato specificamente per l'uso in un centro oncologico, fu un fallimento notevole con un costo stimato di $ 39.000.000 USD. Questo sforzo è stato una partnership del 2012 tra M.D. Anderson Partners e IBM Watson a Houston, in Texas.<ref>Herper M. MD Anderson benches IBM Watson in setback for artificial intelligence in medicine. Forbes. 2017 February 19. [Ref list]</ref> Le prime notizie promozionali che descrivevano il progetto affermavano che il piano era quello di combinare dati genetici, rapporti patologici con note dei medici e articoli di riviste pertinenti per aiutare i medici a elaborare diagnosi e trattamenti. Tuttavia, cinque anni dopo, nel febbraio 2017, M.D. Anderson ha annunciato di aver chiuso il progetto poiché, dopo diversi anni di tentativi, non aveva prodotto uno strumento da utilizzare con i pazienti che fosse pronto per andare oltre i test pilota.
One of the limits of machine learning, therefore, is known as "data shift",<ref>Jérôme Dockès, Gaël Varoquaux, Jean-Baptiste Poline. Preventing dataset shift from breaking machine-learning biomarkers.GigaScience, Volume 10, Issue 9, September 2021, giab055,</ref> or "data movement" and another underlying cause of the failure of some models outside the laboratory, is the "subspecification"<ref>Alexander D’Amour et al. Underspecification Presents Challenges for Credibility in Modern Machine Learning. Journal of Machine Learning Research 23 (2022) 1-61,Submitted 11/20; Revised 12/21; Published 08/22</ref><ref>Damien Teney, Maxime Peyrard, Ehsan Abbasnejad. Predicting Is Not Understanding: Recognizing and Addressing Underspecification in Machine Learning.ECCV 2022: Computer Vision – ECCV 2022 pp 458–476Cite as</ref> so much so that the attempt to build an algorithm-enhanced electronic medical record (EMR) system designed specifically for use in a cancer center, was a notable failure at an estimated cost of $39,000,000 USD. This effort was a 2012 partnership between M.D. Anderson Partners and IBM Watson in Houston, Texas.<ref>Herper M. MD Anderson benches IBM Watson in setback for artificial intelligence in medicine. Forbes. 2017 February 19. [Ref list]</ref> Early promotional news describing the project stated that the plan was to combine genetic data, pathology reports with doctors' notes and relevant journal articles to help doctors come up with diagnoses and treatments. However, five years later, in February 2017, M.D. Anderson announced that he had closed the project because, after several years of trying, he hadn't produced a tool for use with patients that was ready to move beyond pilot testing.{{q2|Fascinating and provocative, explain to me in detail|... the model is essentially simple in its cognitive complexity}}


{{q2|Affascinante e provocatorio, spiegami in dettaglio |... il modello è essenzialmente semplice nella sua complessità cognitiva}}
In essence, the encrypted machine language message sent out by the Central Nervous System in the 10 years of illness of our patient Mary Poppins was interpreted through verbal language as Orofacial Pain from Temporomandibular Disorders'. We have remarked several times, however, that human verbal language is distorted by vagueness and ambiguity therefore, not being a formal language, such as mathematical language, it can generate diagnostic errors. The message in machine language sent out by the Central Nervous System to be searched for is not pain (pain is a verbal language) but the anomaly of 'System State' in which the organism was in that time period. Hence the shift from the semiotics of the symptom and the clinical sign to the '[[System logic|System Logic]]' which, through 'Systems Theory' models, quantify the system's responses to incoming stimuli, even in healthy subjects.


In sostanza il messaggio criptato in linguaggio macchina inviato all'esterno dal Sistema Nervoso Centrale nei 10 anni di malattia della nostra paziente Mary Poppins veniva interpretato attraverso un linguaggio verbale come Dolore Orofacciale da Disordini Tempormandibolari'. Abbiamo rimarcato più volte, però, che il linguaggio verbale umano è distorto dalla vaghezza e dalla ambiguità perciò non essendo un linguaggio formale, come quello matematico, può generare errori diagnostici. Il messaggio in linguaggio macchina inviato all'esterno dal Sistema Nervoso Centrale da ricercare non è il dolore ( il dolore è un linguaggio verbale) ma l'anomalia di 'Stato di Sistema' in cui l'organismo si trovava in quel periodo temporale. Da qui lo shiftamento dalla semeiotica del sintomo e del segno clinico alla '[[Logica di Sistema]]' che attraverso modelli di  'Teoria dei sistemi' quantificano le risposte del sistema da stimoli in entrata, anche nei soggetti sani.
All this is replicated in the proposed 'RNC' model by dividing the process into incoming triggers (Input) and outgoing data (Output) to then be reiterated in a loop managed cognitively by the clinician up to the generation of a single node useful for the definitive diagnosis. The model basically breaks down as follows:


Tutto ciò viene replicato nel modello proposto di 'RNC' andando a suddividere il processo in trigger in entrata (Input) e dati in uscita (Output) per poi essere reiterati in un loop  gestito cognitivamente dal clinico fino alla generazione di un singolo nodo utile per la diagnosi definitiva. Il modello, sostanzialmente, si articola nel seguente modo:
* '''Input:''' By incoming trigger we mean the cognitive process that the clinician implements as a function of the considerations received from previous statements, as has been pointed out in the chapters concerning the 'Medical language logic'. In our case, through the 'Consistency Demarcator <math>\tau</math>, the neurological context was defined as suitable instead of the dental one pursuing a clinical diagnostic explanation of TMDs. This trigger is of essential importance because it allows the clinician to center the network analysis initiation command which will connect a large sample of data corresponding to the set trigger. To this essential initial command, as an algorithmic decryption key, is added the last closing command which is equally important as it depends on the intuition of the clinician who will consider the decryption process finished. In Figure 1, the structure of the 'RNC' is represented in which the difference between the more common neural network structures in which the first stage is structured with a high number of input variables can be noted. In our 'RNC' the first stage corresponds only to a node and precisely to the network analysis initialization command called 'Consistency Demarcator <math>\tau</math>', the subsequent loops of the network, which allow the clinician to terminate or to reiterate the network, (1st loop open, 2st loop open,...... nst loop open) are decisive for concluding the decryption process ( Decrypted Code ). This step will be explained in more detail later in the chapter.


* '''Input:''' Per trigger in entrata si intende il processo cognitivo che il clinico attua in funzione delle considerazioni pervenute da precedenti asserzioni, come è stato puntualizzato nei capitoli riguardanti la 'Logica di linguaggio medico'. Nel nostro caso, attraverso il 'Demarcatore di coerenza <math>\tau</math> è stato definito idoneo il contesto neurologico invece dell'odontoiatrico che perseguiva una spiegazione clinico diagnostica di TMDs. Questo trigger è di essenziale importanza perchè permette al clinico di centrare il '''comando di iniziazione di analisi''' delle rete che connetterà un ampio campione di dati corrispondenti al trigger impostato. A questo essenziale comando iniziale, come chiave algoritmica di decriptazione, si aggiunge l'ultimo comando di chiusura che è altrettanto importante in quanto dipende dall'intuizione del clinico  il quale reputerà finito il processo di decriptazione. In Figura 1, viene rappresentata la struttura della 'RNC' in cui si può notare la differenza tra le più comuni strutture di rete neurali in cui il primo stadio è strutturato con un elevato numero di variabili in entrata. Nella nostra 'RNC' il primo stadio corrisponde solo ad un nodo e precisamente al comando di inizializzazione di analisi della rete denominato 'Demarcatore di Coerenza <math>\tau</math>', i successivi loop della rete, che permettono al clinico di terminare oppure il reiterare della rete, ( 1<sup>st</sup> loop open, 2<sup>st</sup> loop open,...... n<sup>st</sup> loop open) sono determinanti per concludere il processo di decriptazione ( Decrypted Code). Questo passaggio verrà spiegato più dettagliatamente a seguire nel capitolo.
[[File:Immagine 17-12-22 alle 11.34.jpeg|center|500x500px|'''Figura 1:''' Rappresentazione grafica della 'RNC' proposto da Masticationpedia|thumb]]
[[File:Immagine 17-12-22 alle 11.34.jpeg|center|500x500px|'''Figura 1:''' Rappresentazione grafica della 'RNC' proposto da Masticationpedia|frameless]]




<center></center>
<center></center>
* '''Output:''' I dati in uscita dalla rete, che sostanzialmente corrispondono ad un precisa richiesta trigger cognitiva, restituisce un numero ampio di dati classificati e correlati alla keyword richiesta. Il clinico dovrà dedicare tempo e concentrazione per proseguire nella decriptazione del codice macchina. Abbiamo assistito, infatti, come seguendo le indicazioni dettate da criteri di ricerca come lo 'Research Diagnostic Criteria' (RDC) la nostra paziente Mary Poppins sia stata immediatamente categorizzata come 'TMDs' ed abbiamo anche suggerito il modo per ampliare le capacità diagnostiche in odontoiatria attraverso un modello 'fuzzy' che permetterebbe di spaziare in contesti diversi da quello proprio. Ciò mostra la complessità nel fare diagnosi differenziale e le difficoltà nel seguire un roadmap semeiotica classica perchè si è ancorati troppo al linguaggio verbale e poco ad una cultura quantistica dei sistemi biologici. Ciò sconfina nel concetto di linguaggio macchina e comando iniziale di decriptazione che andremo a spiegare brevemente nel prossimo paragrafo.
* '''Output:''' The outgoing data from the network, which substantially correspond to a precise cognitive trigger request, returns a large number of data classified and correlated to the requested keyword. The clinician will have to devote time and concentration to continue decrypting the machine code. In fact, we have witnessed how, following the indications dictated by research criteria such as the 'Research Diagnostic Criteria' (RDC), our patient Mary Poppins was immediately categorized as 'TMDs' and we have also suggested a way to expand diagnostic capabilities in dentistry through a 'fuzzy' model that would allow to range in contexts other than one's own. This shows the complexity in making differential diagnoses and the difficulties in following a classical semiotic roadmap because we are anchored too much to verbal language and too little to a quantum culture of biological systems. This borders on the concept of machine language and initial decryption command that we will briefly explain in the next paragraph.


=== Comando di iniziazione ===
=== Initiation command ===
Per un momento immaginiamo che il cervello parli la lingua di un computer e non viceversa come avviene in ingegneria, per distinguere la già citata differenza tra linguaggio macchina e linguaggio verbale umano. Per scrivere una frase, una parola oppure una formula il computer non usa la modalità classica verbale (alfabeto) oppure la modalità decimale (numeri) con cui noi scriviamo formule matematiche ma un suo codice di linguaggio di 'scrittura' chiamato per il web codice html. Prendiamo come esempio la scrittura di una formula abbastanza complessa, essa si presenta al nostro cervello nel linguaggio verbale con cui noi abbiamo imparato a leggere una equazione matematica, nella seguente forma:  
For a moment let's imagine that the brain speaks the language of a computer and not vice versa as happens in engineering, to distinguish the aforementioned difference between machine language and human verbal language. To write a sentence, a word or a formula, the computer does not use the classic verbal mode (alphabet) or the decimal mode (numbers) with which we write mathematical formulas but its own 'writing' language code called html code for the web . Let's take as an example the writing of a fairly complex formula, it is presented to our brain in the verbal language with which we have learned to read a mathematical equation, in the following form:  


<blockquote><math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2)
<blockquote><math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2)
P(B=\beta|a=\alpha_2)</math>  
P(B=\beta|a=\alpha_2)</math> and let us imagine, letting our minds wander, that this formula corresponds to the message of the Central Nervous System, as we have anticipated, and in particular in the 'Ephaptic Transmission' still to be decrypted</blockquote>The computer and therefore the brain, for our metaphorical example, does not know verbal language or rather it is only a convention generated to simplify natural communication, rather it has its own one with which to write the formula mentioned and in the wiki text language (with extension .php) looks like this, represented in figure 2:                <blockquote>[[File:Codice mod.png|alt=|center|frame|'''Figura 2:''' Wiki testo di una formula matematica. Notare il comando <nowiki><math> di inizializzazione ed il comando </math></nowiki> di chiusura dello script]]
 
ed immaginiamo, lasciando spaziare la mente, che questa formula corrisponda al messaggio del Sistema Nervoso Centrale, come abbiamo anticipato, ed in particolare nella 'Trasmissione Efaptica' ancora da decriptare</blockquote>Il computer e dunque il cervello, per il nostro esempio metaforico, non conosce il linguaggio verbale o meglio è solo una convenzione generata per semplificare la comunicazione naturale, piuttosto ne ha uno suo proprio con cui scrivere la formula citata e nel linguaggio wiki testo ( con estensione .php) si presenta nel seguente modo rappresentato in figura 2:                <blockquote>[[File:Codice mod.png|alt=|center|frame|'''Figura 2:''' Wiki testo di una formula matematica. Notare il comando <nowiki><math> di inizializzazione ed il comando </math></nowiki> di chiusura dello script]]


come si può notare non c'entra nulla con il linguaggio verbale ed infatti, il cervello ha un suo proprio linguaggio macchina costituito non da vocali, consonanti e numeri bensì da potenziali d'azione, pacchetti d'onda, frequenze ed ampiezze, popoli elettrici, ecc. ciò che semplicemente osserviamo in un tracciato elettroencefalografico (EEG) e che rappresenta, appunto, i campi elettromagnetici sullo scalpo dell’attività dei dipoli e delle correnti ioniche cerebrali che si propagano nel volume encefalico. </blockquote>
as you can see it has nothing to do with verbal language and in fact, the brain has its own machine language made up not of vowels, consonants and numbers but of action potentials, wave packets, frequencies and amplitudes, electric populations , etc. what we simply observe in an electroencephalographic tracing (EEG) and which represents, precisely, the electromagnetic fields on the scalp of the activity of the dipoles and the cerebral ionic currents that propagate in the encephalic volume. </blockquote>


La favola, però, non finisce qui perchè questo è un linguaggio di scrittura che nulla ha a che vedere con l'interprete del hardware del computer e dunque della struttura organica del cervello fatta di Centri con funzioni specializzate, circuiterie sinaptiche, polisinaptiche e quant'altro. Questo linguaggio di scrittura, dunque, deriva da un linguaggio macchina che non si modella nel comando '<nowiki><math>' piuttosto che '+2\sum_{\alpha_1'} ma deriva da un linguaggio  binario successivamente convertito in codice di scrittura html. Questo è definito come 'Linguaggio macchina' sia per il computer che per il cervello e si può simulare nel seguente modo</nowiki>
The story, however, does not end here because this is a writing language that has nothing to do with the interpreter of computer hardware and therefore with the organic structure of the brain made up of Centers with specialized functions, synaptic, polysynaptic circuitry and other other. This writing language, therefore, derives from a machine language that is not modeled in the command '<nowiki><math>' rather than '+2\sum_{\alpha_1'} but derives from a binary language subsequently converted into html writing code. This is referred to as 'machine language' for both the computer and the brain and can be simulated as follows</nowiki>


<blockquote>'''00101011 00110010 01011100 01110011 01110101 01101101''' 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00111100 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01100011 01101111 01110011 01011100 01110100 01101000 01100101 01110100 01100001 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01110011 01110001 01110010 01110100 01111011 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01111101 00100000 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 00101001 00001010 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01100001 00111101 01011100 01100001 '''01101100 01110000 01101000 01100001 01011111 00110010 00101001'''</blockquote><blockquote>Ma cosa succede se in questo codice non fosse presente la seguente stringa 00101011 00110010 01011100 01110011 01110101 01101101 che corrisponde al comando '''<nowiki><math></nowiki>''' ?  </blockquote>Il messaggio sarebbe corrotto e la formula non si genererebbe per mancanza del più importante step quello di 'Inizializzazione del codice di comando', così pure se eliminassimo l'ultimo parte di codice 01101100 01110000 01101000 01100001 01011111 00110010 00101001, corrispondente alla chiusura dello script '''<nowiki></math></nowiki>''' la formula rimarrebbe corrotta ed indeterminata.  
<blockquote>'''00101011 00110010 01011100 01110011 01110101 01101101''' 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00111100 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01100011 01101111 01110011 01011100 01110100 01101000 01100101 01110100 01100001 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01110011 01110001 01110010 01110100 01111011 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01111101 00100000 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 00101001 00001010 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01100001 00111101 01011100 01100001 '''01101100 01110000 01101000 01100001 01011111 00110010 00101001'''</blockquote><blockquote>But what if the following string 00101011 00110010 01011100 01110011 01110101 01101101 which corresponds to the <nowiki><math> command is not present in this code?  </nowiki></blockquote>The message would be corrupted and the formula would not be generated due to lack of the most important step that of 'Initialization of the command code', as well as if we eliminated the last part of the code 01101100 01110000 01101000 01100001 01011111 00110010 00101001, corresponding to the closure of the script < /math> the formula would remain corrupted and indeterminate.  


In pratica senza il comando iniziale e finale la formula ben descritta nel seguente forma a noi comprensibile:
In practice, without the initial and final command, the formula is well described in the following form that is understandable to us:


<math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2)
<math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2)
P(B=\beta|a=\alpha_2)</math>
P(B=\beta|a=\alpha_2)</math>


si presenterebbe in un modo incomprensibile alla maggioranza delle persone.  
it would present itself in a way incomprehensible to most people.  


+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2) P(B=\beta|a=\alpha_2)
+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2) P(B=\beta|a=\alpha_2)


Cosí come la mancanza di parte del codice binario corrompe la rappresentazione della formula similmente la decriptazione del linguaggio macchina del SNC é fonte di vaghezza ed ambiguità del linguaggio verbale e contestualmente di errore diagnostico.
Just as the lack of part of the binary code corrupts the representation of the formula, similarly the decryption of the machine language of the CNS is a source of vagueness and ambiguity of the verbal language and contextually of diagnostic error.
=== Processo cognitivo ===
=== Cognitive process ===
----Il cuore del modello 'RNC' sta nel processo cognitivo riferito esclusivamente al clinico che ha in mano il timone mentre la rete rimane sostanzialmente la bussola che avverte del fuori rotta e/o suggerire altre rotte alternative ma la responsabilità decisionale è sempre riferita al clinico ( mente umana). In questo semplice definizione, lo percepiremo meglio a fine del capitolo, il sinergismo 'Rete neurale' e 'Processo cognitivo umano' del clinico sarà auto-implementante perchè da un lato il clinico viene addestrato o meglio guidato dalla rete neurale ( database) e quest'ultima verrà addestrata all'ultimo evento scientifico-clinico aggiornato. In sostanza la diagnosi definitiva  aggiungerà un dato informativo in più alla conoscenza di base temporale <math>Kb_t</math>.  Questo modello differisce sostanzialmente dal 'machine Learning' già solo osservando  i due modelli nella loro configurazione strutturale ( Figura 1 e 3).
----Il cuore del modello 'RNC' sta nel processo cognitivo riferito esclusivamente al clinico che ha in mano il timone mentre la rete rimane sostanzialmente la bussola che avverte del fuori rotta e/o suggerire altre rotte alternative ma la responsabilità decisionale è sempre riferita al clinico ( mente umana). In questo semplice definizione, lo percepiremo meglio a fine del capitolo, il sinergismo 'Rete neurale' e 'Processo cognitivo umano' del clinico sarà auto-implementante perchè da un lato il clinico viene addestrato o meglio guidato dalla rete neurale ( database) e quest'ultima verrà addestrata all'ultimo evento scientifico-clinico aggiornato. In sostanza la diagnosi definitiva  aggiungerà un dato informativo in più alla conoscenza di base temporale <math>Kb_t</math>.  Questo modello differisce sostanzialmente dal 'machine Learning' già solo osservando  i due modelli nella loro configurazione strutturale ( Figura 1 e 3).
[[File:Joim12822-fig-0004-m.jpeg|alt=|left|thumb|200x200px|'''Figura 3:''' Rappresentazione grafica di una RNA archetipica in cui si può notare nel primo stadio di inizializzazione dove sono presenti cinque nodi di input<ref name=":1">G S Handelman, H K Kok, R V Chandra, A H Razavi, M J Lee, H Asadi. eDoctor: machine learning and the future of medicine.J Intern Med.2018 Dec;284(6):603-619.doi: 10.1111/joim.12822. Epub 2018 Sep 3.</ref> mentre nel modello 'RNC' il primo stadio è composto da un solo nodo. Segui testo. ]]Nella figura 3 viene rappresentato una tipica rete neurale, note anche come NN artificiali. Queste NN artificiali tentano di utilizzare più livelli di calcoli per imitare il concetto di come il cervello umano interpreta e trae conclusioni dalle informazioni.<ref name=":1" /> NN sono essenzialmente modelli matematici progettati per gestire informazioni complesse e disparate e la nomenclatura di questo algoritmo deriva dal suo uso di "nodi" simili alle sinapsi nel cervello.<ref>Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000; 19: 541–61.</ref>  Il processo di apprendimento di un NN può essere supervisionato  o non supervisionato. Si dice che una rete neurale apprenda in modo supervisionato se l'output desiderato è già mirato e introdotto nella rete mediante l'addestramento dei dati mentre NN non supervisionato non ha tali output target preidentificati e l'obiettivo è raggruppare unità simili vicine in determinate aree del intervallo di valori. Il modulo supervisionato prende i dati (ad es. sintomi, fattori di rischio, risultati di laboratorio e di imaging) per l'addestramento su esiti noti e cerca diverse combinazioni per trovare la combinazione più predittiva di variabili. NN assegna più o meno peso a determinate combinazioni di nodi per ottimizzare le prestazioni predittive del modello addestrato.<ref>Abdi H. A neural network primer. J Biol Syst 1994; 02: 247–81.</ref>         
[[File:Joim12822-fig-0004-m.jpeg|alt=|left|thumb|200x200px|'''Figura 3:''' Rappresentazione grafica di una RNA archetipica in cui si può notare nel primo stadio di inizializzazione dove sono presenti cinque nodi di input<ref name=":1">G S Handelman, H K Kok, R V Chandra, A H Razavi, M J Lee, H Asadi. eDoctor: machine learning and the future of medicine.J Intern Med.2018 Dec;284(6):603-619.doi: 10.1111/joim.12822. Epub 2018 Sep 3.</ref> mentre nel modello 'RNC' il primo stadio è composto da un solo nodo. Segui testo. ]]Nella figura 3 viene rappresentato una tipica rete neurale, note anche come NN artificiali. Queste NN artificiali tentano di utilizzare più livelli di calcoli per imitare il concetto di come il cervello umano interpreta e trae conclusioni dalle informazioni.<ref name=":1" /> NN sono essenzialmente modelli matematici progettati per gestire informazioni complesse e disparate e la nomenclatura di questo algoritmo deriva dal suo uso di "nodi" simili alle sinapsi nel cervello.<ref>Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000; 19: 541–61.</ref>  Il processo di apprendimento di un NN può essere supervisionato  o non supervisionato. Si dice che una rete neurale apprenda in modo supervisionato se l'output desiderato è già mirato e introdotto nella rete mediante l'addestramento dei dati mentre NN non supervisionato non ha tali output target preidentificati e l'obiettivo è raggruppare unità simili vicine in determinate aree del intervallo di valori. Il modulo supervisionato prende i dati (ad es. sintomi, fattori di rischio, risultati di laboratorio e di imaging) per l'addestramento su esiti noti e cerca diverse combinazioni per trovare la combinazione più predittiva di variabili. NN assegna più o meno peso a determinate combinazioni di nodi per ottimizzare le prestazioni predittive del modello addestrato.<ref>Abdi H. A neural network primer. J Biol Syst 1994; 02: 247–81.</ref>         
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,784

edits