Difference between revisions of "Codice criptato: Trasmissione efaptica"

no edit summary
Tags: Mobile web edit Mobile edit Advanced mobile edit Visual edit
Line 11: Line 11:


{{Bookind2}}
{{Bookind2}}
== Introduzione ==
== Intr<nowiki/>oduzione ==
Nel capitolo '[[1° Clinical case: Hemimasticatory spasm]]' siamo giunti subito a conclusione bypassando tutto il processo cognitivo, clinico e scientifico che è alla base della definizione diagnostica ma non è così semplice altrimenti la nostra povera paziente Mary Poppins non avrebbe dovuto aspettare 10 anni per la diagnosi corretta. <blockquote>Va rimarcato che non si tratta di negligenza da parte dei clinici piuttosto di complessità dei 'Sistemi Complessi biologici' e soprattutto da una forma mentis ancorata, ancora, ad una 'Probabilità classiche' che categorizza i fenotipi sani e malati in funzione dei sintomi e segni clinici campionati invece di sondare lo 'Stato' di sistema nell'evoluzione temporale. Questo concetto, anticipato nel capitolo '[[Logic of medical language: Introduction to quantum-like probability in the masticatory system]]' ed in '[[Conclusions on the status quo in the logic of medical language regarding the masticatory system]]' ha gettato le basi per un linguaggio medico più articolato e meno deterministico, focalizzato principalmente sullo 'Stato' di 'Sistema mesoscopico' il cui scopo è, essenzialmente, quello di decriptare il messaggio in linguaggio macchina generato dal Sistema Nervoso Centrale come assisteremo nella descrizione di altri casi clinici che verranno riportati nei prossimi capitoli di Masticationpedia. </blockquote>Questo modello, che proponiamo con il termine di '<nowiki/>'''Rete Neurale Cognitiva'''<nowiki/>'  abbreviata in ''''RNC'''' è un processo intellettuale cognitivo dinamico del clinico che interroga la rete per auto-addestrarsi. La 'RNC' non è una 'Machine Learning' perchè mentre quest'ultima deve essere addestrata dal clinico, con aggiustamenti statistici e di predizione, la 'RNC' addestra il clinico o meglio indirizza il clinico alla diagnosi pur essendo sempre interrogata seguendo una logica umana, da qui il termine 'cognitiva'.
Nel capitolo<nowiki/> '[[1° Clinical case: Hemimasticatory spasm]]' siamo giunti subito a conclusione bypassando tutto il processo cognitivo, clinico e scientifico che è alla base della definizione diagnostica ma non è così semplice altrimenti la nostra povera paziente Mary Poppins non avrebbe dovuto aspettare 10 anni per la diagnosi corretta.<blockquote>Va rimarcato che non si tratta di negligenza da parte dei clinici piuttosto di complessità dei 'Sistemi Complessi biologici' e soprattutto da una forma mentis ancorata, ancora, ad una 'Probabilità classiche' che categorizza i fenotipi sani e malati in funzione dei sintomi e segni clinici campionati invece di sondare lo 'Stato' di sistema nell'evoluzione temporale. Questo concetto, anticipato nel capitolo '[[Logic of medical language: Introduction to quantum-like probability in the masticatory system]]' ed in '[[Conclusions on the status quo in the logic of medical language regarding the masticatory system]]' ha gettato le basi per un linguaggio medico più articolato e meno deterministico, focalizzato principalmente sullo 'Stato' di 'Sistema mesoscopico' il cui scopo è, essenzialmente, quello di decriptare il messaggio in linguaggio macchina generato dal Sistema Nervoso Centrale come assisteremo nella descrizione di altri casi clinici che verranno riportati nei prossimi capitoli di Masticationpedia. </blockquote>Questo modello, che proponiamo con il termine di ''''Rete Neurale Cognitiva'''<nowiki/>'  abbreviata in ''''RNC'''' è un processo intellettuale cognitivo dinamico del clinico che interroga la rete per auto-addestrarsi. La 'RNC' non è una 'Machine Learning' perchè mentre quest'ultima deve essere addestrata dal clinico, con aggiustamenti statistici e di predizione, la 'RNC' addestra il clinico o meglio indirizza il clinico alla diagnosi pur essendo sempre interrogata seguendo una logica umana, da qui il termine 'cognitiva'.


Alcuni modelli di '''machine learning classici,''' infatti, il cui '''addestramento in laboratorio''' dà risultati positivi, falliscono applicati al '''contesto reale'''. Questo, in genere, è attribuito a una mancata corrispondenza tra i set di dati con i quali la macchina è stata addestrata e i dati che, invece, incontra nel mondo reale. Un esempio pratico di ciò può essere rappresentato dal conflitto di asserzioni incontrato nel processo diagnostico della nostra paziente Mary Poppins tra il contesto odontoiatrico e neurologico che solo il supporto del demarcatore di coerenza <math>\tau</math> (processo cognitivo) è riuscito a risolvere.
Alcuni modelli di '''machine learning classici,''' infatti, il cui '''addestramento in laboratorio''' dà risultati positivi, falliscono applicati al '''contesto reale'''. Questo, in genere, è attribuito a una mancata corrispondenza tra i set di dati con i quali la macchina è stata addestrata e i dati che, invece, incontra nel mondo reale. Un esempio pratico di ciò può essere rappresentato dal conflitto di asserzioni incontrato nel processo diagnostico della nostra paziente Mary Poppins tra il contesto odontoiatrico e neurologico che solo il supporto del demarcatore di coerenza <math>\tau</math> (processo cognitivo) è riuscito a risolvere.
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,119

edits