Difference between revisions of "Store:QLMit03"

no edit summary
(Created page with "===Observations=== In textbooks on quantum mechanics, it is commonly pointed out that the main distinguishing feature of quantum theory is the presence of ''incompatible observables.'' We recall that two observables <math>A</math> <math>B</math> and  are incompatible if it is impossible to assign values to them jointly. In the probabilistic model, this leads to impossibility to determine their joint probability distribution (JPD). The basic examples of incompatible obse...")
 
Line 1: Line 1:
===Observations===
===Observazioni===
In textbooks on quantum mechanics, it is commonly pointed out that the main distinguishing feature of quantum theory is the presence of ''incompatible observables.'' We recall that two observables <math>A</math> <math>B</math> and  are incompatible if it is impossible to assign values to them jointly. In the probabilistic model, this leads to impossibility to determine their joint probability distribution (JPD). The basic examples of incompatible observables are position and momentum of a quantum system, or spin (or polarization) projections onto different axes. In the mathematical formalism, incompatibility is described as noncommutativity of Hermitian operators <math>\hat{A}</math> and  <math>\hat{B}</math> representing observables, i.e., <math>[\hat{A},\hat{B}]\neq0</math>
Nei libri di testo sulla meccanica quantistica, viene comunemente sottolineato che la principale caratteristica distintiva della teoria quantistica è la presenza di ''osservabili incompatibili''. Ricordiamo che due osservabili <math>A</math> e <math>B</math> sono incompatibili se è impossibile attribuire loro valori congiuntamente. Nel modello probabilistico, questo porta all'impossibilità di determinare la loro distribuzione di probabilità congiunta (JPD). Gli esempi di base di osservabili incompatibili sono la posizione e la quantità di moto di un sistema quantistico o le proiezioni di spin (o polarizzazione) su assi diversi. Nel formalismo matematico, l'incompatibilità è descritta come non commutatività degli ''operatori Hermitiani'' <math>\hat{A}</math> e <math>\hat{B}</math> che rappresentano osservabili, cioè,<math>[\hat{A},\hat{B}]\neq0</math>


Here we refer to the original and still basic and widely used model of quantum observables, Von Neumann 1955<ref>Von Neumann J. Mathematical Foundations of Quantum Mechanics Princeton Univ. Press, Princeton, NJ, USA (1955)</ref> (Section 3.2).
 
Qui ci riferiamo al modello originale e ancora di base e ampiamente utilizzato di osservabili quantistici, Von Neumann 1955<ref>Von Neumann J. Mathematical Foundations of Quantum Mechanics Princeton Univ. Press, Princeton, NJ, USA (1955)</ref> (Sezione 3.2).


Incompatibility–noncommutativity is widely used in quantumphysics and the basic physical observables, as say position and momentum, spin and polarization projections, are traditionally represented in this paradigm, by Hermitian operators. We also point to numerous applications of this approach to cognition, psychology, decision making (Khrennikov, 2004a<ref>Khrennikov A. Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena, Ser.: Fundamental Theories of Physics, Kluwer, Dordreht(2004)</ref>, Busemeyer and Bruza, 2012<ref name=":10">Busemeyer J., Bruza P. Quantum Models of Cognition and Decision Cambridge Univ. Press, Cambridge(2012)</ref>, Bagarello, 2019<ref>Bagarello F. Quantum Concepts in the Social, Ecological and Biological Sciences Cambridge University Press, Cambridge (2019)</ref>) (see especially article (Bagarello et al., 2018<ref>Bagarello F., Basieva I., Pothos E.M., Khrennikov A. Quantum like modeling of decision making: Quantifying uncertainty with the aid of heisenberg-robertson inequality J. Math. Psychol., 84 (2018), pp. 49-56</ref>) which is devoted to quantification of the Heisenberg uncertainty relations in decision making). Still, it may be not general enough for our purpose — to quantum-like modeling in biology, not any kind of non-classical bio-statistics can be easily delegated to von Neumann model of observations. For example, even very basic cognitive effects cannot be described in a way consistent with the standard observation model (Khrennikov et al., 2014<ref>Khrennikov A., Basieva I., DzhafarovE.N., Busemeyer J.R. Quantum models for psychological measurements: An unsolved problem. PLoS One, 9 (2014), Article e110909</ref>, Basieva and Khrennikov, 2015<ref>Basieva I., Khrennikov A. On the possibility to combine the order effect with sequential reproducibility for quantum measurements Found. Phys., 45 (10) (2015), pp. 1379-1393</ref>).
Incompatibility–noncommutativity is widely used in quantumphysics and the basic physical observables, as say position and momentum, spin and polarization projections, are traditionally represented in this paradigm, by Hermitian operators. We also point to numerous applications of this approach to cognition, psychology, decision making (Khrennikov, 2004a<ref>Khrennikov A. Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena, Ser.: Fundamental Theories of Physics, Kluwer, Dordreht(2004)</ref>, Busemeyer and Bruza, 2012<ref name=":10">Busemeyer J., Bruza P. Quantum Models of Cognition and Decision Cambridge Univ. Press, Cambridge(2012)</ref>, Bagarello, 2019<ref>Bagarello F. Quantum Concepts in the Social, Ecological and Biological Sciences Cambridge University Press, Cambridge (2019)</ref>) (see especially article (Bagarello et al., 2018<ref>Bagarello F., Basieva I., Pothos E.M., Khrennikov A. Quantum like modeling of decision making: Quantifying uncertainty with the aid of heisenberg-robertson inequality J. Math. Psychol., 84 (2018), pp. 49-56</ref>) which is devoted to quantification of the Heisenberg uncertainty relations in decision making). Still, it may be not general enough for our purpose — to quantum-like modeling in biology, not any kind of non-classical bio-statistics can be easily delegated to von Neumann model of observations. For example, even very basic cognitive effects cannot be described in a way consistent with the standard observation model (Khrennikov et al., 2014<ref>Khrennikov A., Basieva I., DzhafarovE.N., Busemeyer J.R. Quantum models for psychological measurements: An unsolved problem. PLoS One, 9 (2014), Article e110909</ref>, Basieva and Khrennikov, 2015<ref>Basieva I., Khrennikov A. On the possibility to combine the order effect with sequential reproducibility for quantum measurements Found. Phys., 45 (10) (2015), pp. 1379-1393</ref>).
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,782

edits