2,041
edits
(Created page with "indica gli elementi appartenenti a entrambi gli insiemi") Tags: Mobile web edit Mobile edit |
(Updating to match new version of source page) |
||
Line 4: | Line 4: | ||
[[File:Fuzzy1.jpg|left|250px]] | [[File:Fuzzy1.jpg|left|250px]] | ||
In questo capitolo parleremo della ''logica fuzzy''. Si chiama ''fuzzy'' perché è caratterizzata da una gradualità: | In questo capitolo parleremo della ''logica fuzzy''. Si chiama ''fuzzy'' perché è caratterizzata da una gradualità: a un oggetto si può attribuire una qualità che può avere ''vari gradi di verità''. | ||
Nella prima parte di questo capitolo, verrà discusso concettualmente il significato della verità graduata, mentre nella seconda parte, ci addentreremo nel formalismo matematico introducendo la funzione di appartenenza <math>\mu_{\displaystyle {\tilde {A}}}(x)</math>: l'elemento che ci permette di sintetizzare matematicamente le sfumature di questa logica del linguaggio. È stato possibile dimostrare che con il ragionamento 'fuzzy', a differenza delle precedenti logiche del linguaggio, le diagnosi mostrano meno incertezza. Nonostante questo, però, si sente ancora la necessità di raffinare ulteriormente il metodo linguistico e di arricchirlo con altre 'logiche'..{{ArtBy| | Nella prima parte di questo capitolo, verrà discusso concettualmente il significato della verità graduata, mentre nella seconda parte, ci addentreremo nel formalismo matematico introducendo la funzione di appartenenza <math>\mu_{\displaystyle {\tilde {A}}}(x)</math>: l'elemento che ci permette di sintetizzare matematicamente le sfumature di questa logica del linguaggio. È stato possibile dimostrare che con il ragionamento 'fuzzy', a differenza delle precedenti logiche del linguaggio, le diagnosi mostrano meno incertezza. Nonostante questo, però, si sente ancora la necessità di raffinare ulteriormente il metodo linguistico e di arricchirlo con altre 'logiche'..{{ArtBy| | ||
Line 133: | Line 133: | ||
==Fuzzy set <math>\tilde{A}</math> e funzione di appartenenza <math>\mu_{\displaystyle {\tilde {A}}}(x)</math>== | ==Fuzzy set <math>\tilde{A}</math> e funzione di appartenenza <math>\mu_{\displaystyle {\tilde {A}}}(x)</math>== | ||
We choose - as a formalism - to represent a fuzzy set with the 'tilde':<math>\tilde{A}</math>. A fuzzy set is a set where the elements have a 'degree' of belonging (consistent with fuzzy logic): some can be included in the set at 100%, others in lower percentages. | <span lang="en" dir="ltr" class="mw-content-ltr">We choose - as a formalism - to represent a fuzzy set with the 'tilde'</span>:<math>\tilde{A}</math>. <span lang="en" dir="ltr" class="mw-content-ltr">A fuzzy set is a set where the elements have a 'degree' of belonging (consistent with fuzzy logic): some can be included in the set at 100%, others in lower percentages</span>. | ||
To mathematically represent this degree of belonging is the function <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> called | <span lang="en" dir="ltr" class="mw-content-ltr">To mathematically represent this degree of belonging is the function</span> <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> <span lang="en" dir="ltr" class="mw-content-ltr">called</span> ''''<span lang="en" dir="ltr" class="mw-content-ltr">Membership Function</span>''''. <span lang="en" dir="ltr" class="mw-content-ltr">The functio</span>n <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> <span lang="en" dir="ltr" class="mw-content-ltr">is a continuous function defined in the interval</span> <math>[0;1]</math><span lang="en" dir="ltr" class="mw-content-ltr">where it is</span>: | ||
*<math>\mu_ {\tilde {A}}(x) = 1\rightarrow </math> | *<math>\mu_ {\tilde {A}}(x) = 1\rightarrow </math> <span lang="en" dir="ltr" class="mw-content-ltr">if</span> <math>x</math> <span lang="en" dir="ltr" class="mw-content-ltr">is totally contained in</span> <math>A</math> (<span lang="en" dir="ltr" class="mw-content-ltr">these points are called 'nucleus', they indicate <u>plausible</u> predicate values</span>). | ||
*<math>\mu_ {\tilde {A}}(x) = 0\rightarrow </math> | *<math>\mu_ {\tilde {A}}(x) = 0\rightarrow </math> <span lang="en" dir="ltr" class="mw-content-ltr">if</span> <math>x</math> <span lang="en" dir="ltr" class="mw-content-ltr">is not contained in</span> <math>A</math> | ||
*<math>0<\mu_ {\tilde {A}}(x) < 1 \;\rightarrow </math> if <math>x</math> is partially contained in <math>A</math> (these points are called 'support', they indicate the <u>possible</u> predicate values). | *<math>0<\mu_ {\tilde {A}}(x) < 1 \;\rightarrow </math> <span lang="en" dir="ltr" class="mw-content-ltr">if</span> <math>x</math> <span lang="en" dir="ltr" class="mw-content-ltr">is partially contained in</span> <math>A</math> (<span lang="en" dir="ltr" class="mw-content-ltr">these points are called 'support', they indicate the <u>possible</u> predicate values</span>). | ||
The graphical representation of the function <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> | <span lang="en" dir="ltr" class="mw-content-ltr">The graphical representation of the function</span> <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> <span lang="en" dir="ltr" class="mw-content-ltr">can be varied; from those with linear lines (triangular, trapezoidal) to those in the shape of bells or 'S' (sigmoidal) as depicted in Figure 1, which contains the whole graphic concept of the function of belonging</span>.<ref>{{Cite book | ||
| autore = Zhang W | | autore = Zhang W | ||
| autore2 = Yang J | | autore2 = Yang J | ||
Line 184: | Line 184: | ||
| OCLC = | | OCLC = | ||
}}</ref> | }}</ref> | ||
[[File:Fuzzy_crisp.svg|alt=|left|thumb|400px|'''Figure 1:''' Types of graphs for the membership function.]] | [[File:Fuzzy_crisp.svg|alt=|left|thumb|400px|'''<span lang="en" dir="ltr" class="mw-content-ltr">Figure</span> 1:''' <span lang="en" dir="ltr" class="mw-content-ltr">Types of graphs for the membership function</span>.]] | ||
The '''support set''' of a fuzzy set is defined as the zone in which the degree of membership results <math>0<\mu_ {\tilde {A}}(x) < 1</math>; on the other hand, the '''core''' is defined as the area in which the degree of belonging assumes value <math>\mu_ {\tilde {A}}(x) = 1</math> | <span lang="en" dir="ltr" class="mw-content-ltr">The '''support set''' of a fuzzy set is defined as the zone in which the degree of membership results</span> <math>0<\mu_ {\tilde {A}}(x) < 1</math>; <span lang="en" dir="ltr" class="mw-content-ltr">on the other hand, the '''core''' is defined as the area in which the degree of belonging assumes value</span> <math>\mu_ {\tilde {A}}(x) = 1</math> | ||
The 'Support set' represents the values of the predicate deemed '''possible''', while the 'core' represents those deemed more '''plausible'''. | <span lang="en" dir="ltr" class="mw-content-ltr">The 'Support set' represents the values of the predicate deemed '''possible''', while the 'core' represents those deemed more '''plausible'''</span>. | ||
If <math>{A}</math> represented a set in the ordinary sense of the term or classical language logic previously described, its membership function could assume only the values <math>1</math> or <math>0</math>, <math>\mu_{\displaystyle {{A}}}(x)= 1 \; \lor \;\mu_{\displaystyle {{A}}}(x)= 0</math> depending on whether the element <math>x</math> | <span lang="en" dir="ltr" class="mw-content-ltr">If</span> <math>{A}</math> <span lang="en" dir="ltr" class="mw-content-ltr">represented a set in the ordinary sense of the term or classical language logic previously described, its membership function could assume only the values</span> <math>1</math> <span lang="en" dir="ltr" class="mw-content-ltr">or</span> <math>0</math>, <math>\mu_{\displaystyle {{A}}}(x)= 1 \; \lor \;\mu_{\displaystyle {{A}}}(x)= 0</math> <span lang="en" dir="ltr" class="mw-content-ltr">depending on whether the element</span> <math>x</math> <span lang="en" dir="ltr" class="mw-content-ltr">belongs to the whole or not, as considered</span>. <span lang="en" dir="ltr" class="mw-content-ltr">Figure 2 shows a graphic representation of the crisp (rigidly defined) or fuzzy concept of membership, which clearly recalls Smuts's considerations</span>.<ref name=":0">•SMUTS J.C. 1926, [[wikipedia:Holism_and_Evolution|<span lang="en" dir="ltr" class="mw-content-ltr">Holism and Evolution</span>]], London: Macmillan.</ref> | ||
Let us go back to the specific case of our Mary Poppins, in which we see a discrepancy between the assertions of the dentist and the neurologist and we look for a comparison between classical logic and fuzzy logic: | <span lang="en" dir="ltr" class="mw-content-ltr">Let us go back to the specific case of our Mary Poppins, in which we see a discrepancy between the assertions of the dentist and the neurologist and we look for a comparison between classical logic and fuzzy logic</span>: | ||
[[File:Fuzzy1.jpg|thumb|400x400px|'''Figure 2:''' Representation of the comparison between a classical and fuzzy ensemble.]] | [[File:Fuzzy1.jpg|thumb|400x400px|'''<span lang="en" dir="ltr" class="mw-content-ltr">Figure 2</span>:''' <span lang="en" dir="ltr" class="mw-content-ltr">Representation of the comparison between a classical and fuzzy ensemble</span>.]] | ||
'''Figure 2:''' Let us imagine the Science Universe <math>U</math> in which there are two parallel worlds or contexts, <math>{A}</math> and <math>\tilde{A}</math>. | '''<span lang="en" dir="ltr" class="mw-content-ltr">Figure</span> 2:''' <span lang="en" dir="ltr" class="mw-content-ltr">Let us imagine the Science Universe</span> <math>U</math> <span lang="en" dir="ltr" class="mw-content-ltr">in which there are two parallel worlds or contexts</span>, <math>{A}</math> <span lang="en" dir="ltr" class="mw-content-ltr">and</span> <math>\tilde{A}</math>. | ||
<math>{A}=</math> In the scientific context, the so-called ‘crisp’, and we have converted into ''the logic'' of ''Classic Language'', in which the physician has an absolute scientific background information <math>KB</math> with a clear dividing line that we have named <math>KB_c</math>. | <math>{A}=</math> <span lang="en" dir="ltr" class="mw-content-ltr">In the scientific context, the so-called ‘crisp’, and we have converted into ''the logic'' of ''Classic Language'', in which the physician has an absolute scientific background information</span> <math>KB</math> <span lang="en" dir="ltr" class="mw-content-ltr">with a clear dividing line that we have named</span> <math>KB_c</math>. | ||
<math>\tilde{A}=</math> In another scientific context called ‘fuzzy logic’, and in which there is a union between the subset <math>{A}</math> in <math>\tilde{A}</math> that we can go so far as to say: union between <math>KB_c</math>. | <math>\tilde{A}=</math> <span lang="en" dir="ltr" class="mw-content-ltr">In another scientific context called ‘fuzzy logic’, and in which there is a union between the subset</span> <math>{A}</math> <span lang="en" dir="ltr" class="mw-content-ltr">in</span> <math>\tilde{A}</math> <span lang="en" dir="ltr" class="mw-content-ltr">that we can go so far as to say: union between</span> <math>KB_c</math>. | ||
We will remarkably notice the following deductions: | <span lang="en" dir="ltr" class="mw-content-ltr">We will remarkably notice the following deductions</span>: | ||
*'''Classical Logic''' in the Dental Context <math>{A}</math> in which only a logical process that gives as results <math>\mu_{\displaystyle {{A}}}(x)= 1 </math> | *'''<span lang="en" dir="ltr" class="mw-content-ltr">Classical Logic</span>''' <span lang="en" dir="ltr" class="mw-content-ltr">in the Dental Context</span> <math>{A}</math> <span lang="en" dir="ltr" class="mw-content-ltr">in which only a logical process that gives as results</span> <math>\mu_{\displaystyle {{A}}}(x)= 1 </math> <span lang="en" dir="ltr" class="mw-content-ltr">will be possible, or</span> <math>\mu_{\displaystyle {{A}}}(x)= 0 </math> <span lang="en" dir="ltr" class="mw-content-ltr">being the range of data</span> <math>D=\{\delta_1,\dots,\delta_4\}</math> <span lang="en" dir="ltr" class="mw-content-ltr">reduced to basic knowledge</span> <math>KB</math> <span lang="en" dir="ltr" class="mw-content-ltr">in the set</span> <math>{A}</math>. <span lang="en" dir="ltr" class="mw-content-ltr">This means that outside the dental world there is a void and that term of set theory is written precisely</span> <math>\mu_{\displaystyle {{A}}}(x)= 0 </math> <span lang="en" dir="ltr" class="mw-content-ltr">and which is synonymous with a high range of</span>: | ||
<br />{{q2|Differential diagnostic error|}} | <br />{{q2|<span lang="en" dir="ltr" class="mw-content-ltr">Differential diagnostic error</span>|}} | ||
*'''Fuzzy logic''' in a dental context <math>\tilde{A}</math> in which they are represented beyond the basic knowledge <math>KB</math> of the dental context also those partially acquired from the neurophysiological world <math>0<\mu_ {\tilde {A}}(x) < 1</math> will have the prerogative to return a result <math>\mu_\tilde{A}(x)= 1 | *'''<span lang="en" dir="ltr" class="mw-content-ltr">Fuzzy logic</span>''' <span lang="en" dir="ltr" class="mw-content-ltr">in a dental context</span> <math>\tilde{A}</math> <span lang="en" dir="ltr" class="mw-content-ltr">in which they are represented beyond the basic knowledge</span> <math>KB</math> <span lang="en" dir="ltr" class="mw-content-ltr">of the dental context also those partially acquired from the neurophysiological world</span> <math>0<\mu_ {\tilde {A}}(x) < 1</math> <span lang="en" dir="ltr" class="mw-content-ltr">will have the prerogative to return a result</span> <math>\mu_\tilde{A}(x)= 1 | ||
</math> and a result <math>0<\mu_ {\tilde {A}}(x) < 1</math> because of | </math> <span lang="en" dir="ltr" class="mw-content-ltr">and a result</span> <math>0<\mu_ {\tilde {A}}(x) < 1</math> <span lang="en" dir="ltr" class="mw-content-ltr">because of basic knowledge</span> <math>KB</math> <span lang="en" dir="ltr" class="mw-content-ltr">which at this point is represented by the union of</span> <math>KB_c</math> <span lang="en" dir="ltr" class="mw-content-ltr">dental and neurological contexts</span>. <span lang="en" dir="ltr" class="mw-content-ltr">The result of this scientific-clinical implementation of dentistry would allow a</span> {{q2|<span lang="en" dir="ltr" class="mw-content-ltr">Reduction of differential diagnostic error</span>|}} | ||
==Final considerations== | ==<span lang="en" dir="ltr" class="mw-content-ltr">Final considerations</span>== | ||
Topics that could distract the reader’s | <span lang="en" dir="ltr" class="mw-content-ltr">Topics that could distract the reader’s attention were, in fact, essential for demonstrating the message</span>. <span lang="en" dir="ltr" class="mw-content-ltr">Normally, indeed, when any more or less brilliant mind allows itself to throw a stone into the pond of Science, a shockwave is generated, typical of the period of Kuhn’s extraordinary science, against which most of the members of the international scientific community row</span>. <span lang="en" dir="ltr" class="mw-content-ltr">With good faith, we can say that this phenomenon—as regards the topics we are addressing here—is well represented in the premise at the beginning of the chapter</span>. | ||
In these chapters, | <span lang="en" dir="ltr" class="mw-content-ltr">In these chapters, actually, a fundamental topic for science has been approached</span>: <span lang="en" dir="ltr" class="mw-content-ltr">the re-evaluation, the specific weight that has always been given to</span> <math>P-value</math>, <span lang="en" dir="ltr" class="mw-content-ltr">awareness of scientific / clinical contexts</span> <math>KB_c</math>, <span lang="en" dir="ltr" class="mw-content-ltr">having undertaken a more elastic path of Fuzzy Logic than the Classical one, realizing the extreme importance of</span> <math>KB</math> <span lang="en" dir="ltr" class="mw-content-ltr">and ultimately the union of contexts</span> <math>KB_c</math> <span lang="en" dir="ltr" class="mw-content-ltr">to increase its diagnostic capacity</span>.<ref>Mehrdad Farzandipour, Ehsan Nabovati, Soheila Saeedi, Esmaeil Fakharian. [https://pubmed.ncbi.nlm.nih.gov/30119845/ Fuzzy decision support systems to diagnose musculoskeletal disorders: A systematic literature review] . Comput Methods Programs Biomed. 2018 Sep;163:101-109. doi: 10.1016/j.cmpb.2018.06.002. Epub 2018 Jun 6.</ref><ref>Long Huang, Shaohua Xu, Kun Liu, Ruiping Yang, Lu Wu. [https://pubmed.ncbi.nlm.nih.gov/34257635/ A Fuzzy Radial Basis Adaptive Inference Network and Its Application to Time-Varying Signal Classification] . Comput Intell Neurosci, 2021 Jun 23;2021:5528291.<br>doi: 10.1155/2021/5528291.eCollection 2021.</ref> | ||
<span lang="en" dir="ltr" class="mw-content-ltr">In the next chapter we will be ready to undertake an equally fascinating path: it will leads us to the context of a System Language logic, and will allow us to deepen our knowledge, no longer in clinical semeiotics only, but in the understanding of system functions (recently it is being evaluated in neuromotor disciplines for Parkinson's disease)</span>.<ref>Mehrbakhsh Nilashi, Othman Ibrahim, Ali Ahani. [https://pubmed.ncbi.nlm.nih.gov/27686748/ Accuracy Improvement for Predicting Parkinson's Disease Progression.] Sci Rep. 2016 Sep 30;6:34181. | |||
doi: 10.1038/srep34181.</ref> | |||
<span lang="en" dir="ltr" class="mw-content-ltr">In Masticationpedia, of course, we will report the topic 'System Inference' in the field of the masticatory system as we could read in the next chapter entitled 'System logic'</span>. | |||
{{Btnav|The logic of probabilistic language|Introduction}} | {{Btnav|The logic of probabilistic language|Introduction}} |
edits