Store:MTcondilo

Revision as of 00:49, 22 December 2024 by Gianni (talk | contribs) (→‎Conclusioni del paragrafo)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Go to top

Condilo Mediotrusivo

Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti e , e il segmento che unisce i punti e . Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.



Condilo Mediotrusivo

Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti e , e il segmento che unisce i punti e . Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.

Tabella 5
Tracciato masticatorio Markers Distanza (mm) Direzione in X (antero-posteriore) Direzione (Y-latero-mediale)
Figura condilo mediotrusivo mod..jpg
Figura 5:
2 5.09 Protrusiva Medializzazione
3 14.81 Protrusiva Medializzazione
4 25.58 Protrusiva Medializzazione
5 26.54 Protrusiva Inversione
6 14.57 Protrusiva Lateralizzazione
7* 6.25 Protrusiva Lateralizzazione
8 1.19 Protrusiva Lateralizzazione

Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo abbiamo una distanza dal punto di partenza di 6.25 mm ed un angolo calcolato sull'arcoseno . Infine, sottraendo questo angolo da 180°, otteniamo un angolo di , noto come Angolo di Bennett. Per approfondire la procedura matematica vedi  Info.pngL'angolo tra due segmenti può essere calcolato utilizzando la trigonometria vettoriale. Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: il vettore tra il punto e il punto : . Il vettore tra il punto e il punto di riferimento : . Il prodotto scalare tra i vettori e è dato dalla formula: . Sostituendo i valori calcolati: . Le norme dei vettori sono: e . Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: . Sostituendo i valori: . L'angolo è calcolato tramite la funzione arccoseno: . Infine, sottraendo questo angolo da 180°, otteniamo un angolo di , noto come Angolo di Bennett.

Conclusioni del paragrafo

Il moto rototraslazionale dei condili è fondamentale per comprendere la cinematica mandibolare e i tracciati descritti dai denti durante la masticazione. Se i condili ruotassero semplicemente attorno a un punto fisso, i tracciati dei molari e degli incisivi sarebbero archi di cerchio con un unico centro. Tuttavia, i movimenti reali dei condili sono molto più complessi.

Durante la laterotrusione, il condilo ipsilaterale (dello stesso lato) esegue un movimento che combina rotazione attorno all'asse verticale e traslazione laterale. Allo stesso tempo, il condilo controlaterale si muove principalmente in direzione mediale e anteriore, descrivendo un percorso noto come "tragitto orbitante".

Matematicamente, possiamo descrivere il moto rototraslazionale del condilo laterotrusivo come una combinazione di una rotazione attorno all'asse verticale passante per il condilo stesso e una traslazione laterale lungo una traiettoria specifica. La posizione del molare ipsilaterale in un determinato istante può essere ottenuta applicando la rotazione attorno all'asse verticale e poi la traslazione corrispondente.

Supponiamo che il condilo laterotrusivo ruoti di un angolo attorno all'asse verticale e si sposti lateralmente di una quantità . La posizione del molare ipsilaterale dopo questo movimento sarà data da:

Dove è la posizione iniziale del molare ipsilaterale. Man mano che il condilo ruota e si sposta lateralmente, le coordinate del molare descriveranno una traiettoria ellittica invece che circolare.

Questo fenomeno si verifica perché il centro di rotazione istantaneo del condilo laterotrusivo non è fisso, ma si sposta continuamente a causa della traslazione laterale. Pertanto, il tracciato descritto dal molare ipsilaterale non può essere un semplice arco di cerchio, ma assume una forma ellittica.

Un comportamento simile si osserva anche per il condilo controlaterale (mediotrusivo) e per gli incisivi. Sebbene il movimento del condilo mediotrusivo sia principalmente una traslazione mediale e anteriore, può essere coinvolta anche una certa rotazione attorno all'asse verticale. Questa combinazione di traslazione e rotazione porta nuovamente a tracciati ellittici per il molare controlaterale e per gli incisivi.

È importante sottolineare che i tracciati ellittici osservati non sono ellissi perfette, ma curve più complesse, poiché i movimenti dei condili non sono semplici rotazioni e traslazioni costanti. Infatti, i condili seguono traiettorie più elaborate, con accelerazioni e decelerazioni, che si riflettono nella forma dei tracciati dei denti.

Inoltre, i tracciati dei molari e degli incisivi non sono indipendenti, ma sono strettamente correlati ai movimenti dei condili corrispondenti. Pertanto, l'analisi dei tracciati dei denti può fornire informazioni preziose sulla cinematica mandibolare e sui movimenti articolari dei condili.

In conclusione, la combinazione di rotazione e traslazione dei condili durante i movimenti mandibolari impedisce ai tracciati dei molari e degli incisivi di essere semplici archi di cerchio. Invece, questi tracciati assumono forme ellittiche, poiché il centro di rotazione istantaneo dei condili si sposta continuamente a causa del moto rototraslazionale complesso. Per rendere più esaustivo il concetto si è generata una conica passante per 5 punti presi in modo strategico nella figura 1, come approfondiremo nel prossimo paragrafo.


Rappresentazione cinematica attraverso una conica

Per rappresentare in modo più dettagliato e formale la forma ellittica dei tracciati dei denti dovuti al moto rototraslazionale dei condili, possiamo sovrapporre una conica (ellisse) a più punti. Questo ci permetterà di evidenziare il contributo dei movimenti dei condili laterotrusivo e mediotrusivo, nonché delle distanze occlusali da essi, nella generazione di tali tracciati pseudoellittici.

Consideriamo ad esempio il tracciato del molare ipsilaterale durante la laterotrusione. Supponiamo di avere le coordinate di 5 punti distinti su questo tracciato: .

L'equazione generale di un'ellisse centrata nell'origine è data da:

Dove e sono rispettivamente i semiassi maggiore e minore dell'ellisse.

Per determinare i valori di e che meglio approssimano i 5 punti dati, possiamo utilizzare il metodo dei minimi quadrati. L'obiettivo è minimizzare la somma dei quadrati delle distanze dei punti dall'ellisse.

Definiamo la funzione di costo:

Minimizzando rispetto a e , otteniamo le stime ottimali dei semiassi e che approssimano al meglio i punti dati.

Questa ellisse ottimizzata rappresenterà il tracciato pseudoellittico del molare ipsilaterale, influenzato dai movimenti rototraslazionali dei condili laterotrusivo e mediotrusivo, nonché dalle distanze occlusali da essi.

I semiassi e dell'ellisse saranno determinati dai pesi relativi dei contributi dei condili e delle distanze occlusali. Ad esempio, un valore di maggiore potrebbe indicare un'influenza più significativa del condilo laterotrusivo, mentre un valore di più piccolo potrebbe suggerire un'influenza minore del condilo mediotrusivo o delle distanze occlusali.

Questo approccio può essere applicato anche ai tracciati degli incisivi e dei molari controlaterali, sovrapponendo ellissi ottimizzate ai rispettivi punti per ottenere una rappresentazione formale dei loro tracciati pseudoellittici.

In questo modo, l'analisi matematica dei tracciati dei denti durante la masticazione può essere arricchita con una rappresentazione visiva più dettagliata e quantitativa, permettendo di studiare in modo più approfondito il contributo dei diversi fattori cinematici, come i movimenti dei condili e le distanze occlusali, nella generazione di tali tracciati complessi.