Store:AC36mediotrusivo

Revision as of 20:09, 27 October 2024 by Gianni (talk | contribs) (Created page with "==Molare controlaterale== left|thumb|300x300px {| class="wikitable" |+Distanza dei punti in millimetri e direzioni !Punto!!Distanza (mm) !Direzione in X (antero-posteriore) !Direzione in Y (latero-mediale) |- |2||1.11 |Avanti||Laterale |- |3||3.89 |Avanti||Laterale |- |4||7.76 |Avanti||Laterale |- |5||13.75 |Avanti||Laterale |- |6||15.71 |Indietro||Laterale |- |7||8.99 |Indietro||Laterale |- |8||2.43 |Indietro||Laterale |} <br /...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Go to top

Molare controlaterale

Controlateral molar point.jpeg
Distanza dei punti in millimetri e direzioni
Punto Distanza (mm) Direzione in X

(antero-posteriore)

Direzione in Y

(latero-mediale)

2 1.11 Avanti Laterale
3 3.89 Avanti Laterale
4 7.76 Avanti Laterale
5 13.75 Avanti Laterale
6 15.71 Indietro Laterale
7 8.99 Indietro Laterale
8 2.43 Indietro Laterale


Descrizione focalizzata dell'analisi matematica dei punti

Punti e coordinate coinvolte

Nel contesto della nostra analisi, abbiamo tre punti nello spazio 2D che ci interessano:


  • Coordinate del punto 1 dell'incisivo sul lato lavorante:
  • Coordinate del punto 7 dell'incisivo sul lato lavorante:
  • Coordinate del punto di riferimento dell'incisivo sul lato lavorante:


Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti e , e il segmento che unisce i punti e Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.

Iter matematico per il calcolo dell'angolo

L'angolo tra due segmenti può essere calcolato utilizzando la **trigonometria vettoriale** e, in particolare, il **prodotto scalare**. Questo metodo è utile quando vogliamo determinare la relazione angolare tra due movimenti distinti nello spazio.

1. Definizione dei vettori

Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti:

  • Il vettore tra il punto e il punto :

  • Il vettore tra il punto e il punto :

2. Prodotto scalare

Il **prodotto scalare** tra due vettori \(\vec{AB}\) e \(\vec{AC}\) è dato dalla formula:

Sostituendo i valori calcolati:

3. Calcolo delle norme

Le norme (lunghezze) dei due vettori sono calcolate con la formula della lunghezza del vettore:

4. Calcolo dell'angolo

Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori:

Sostituendo i valori:

Infine, l'angolo \(\theta\) è calcolato tramite la funzione arcoseno:

Motivo dell'analisi

L'obiettivo dell'analisi è determinare l'angolo tra due movimenti all'interno di un sistema articolare, in particolare nell'area di studio della cinematica masticatoria. La comprensione di questi angoli ci consente di:

1. **Valutare la dinamica mandibolare**: Calcolare gli angoli tra i segmenti mandibolari può fornire informazioni essenziali su come la mandibola si sposta durante il movimento, aiutando a descrivere i pattern del movimento articolare.

2. **Modellare la biomeccanica del sistema masticatorio**: Gli angoli tra i punti permettono di costruire modelli accurati che simulano il comportamento meccanico del sistema mandibolare, utilizzabili in applicazioni cliniche per diagnosi e trattamenti.

3. **Confrontare con angoli standard**: Gli angoli misurati possono essere confrontati con valori normali o patologici per identificare eventuali alterazioni nei movimenti mandibolari che potrebbero indicare disturbi dell'articolazione temporomandibolare (ATM).

Questo calcolo è fondamentale per fornire una descrizione matematica precisa della cinetica mandibolare e per migliorare la modellazione biomeccanica di strutture orofacciali, cruciali per la diagnosi e l'intervento clinico.