Store:QLMit06

Revision as of 12:58, 11 April 2023 by Gianni (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Go to top

3.2. Formalismo di Von Neumann per osservabili quantistici

Nel formalismo quantistico originale (Von Neumann, 1955),[1] l'osservabile fisico Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} è rappresentato da un operatore hermitiano Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{A}} . Consideriamo solo operatori con spettri discreti: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{A}=\sum_x x\hat{E}^A(x)} dove Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{E}^A(x)} è il proiettore sul sottospazio di Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \mathcal{H}} corrispondente all'autovalore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle x} . Supponiamo che lo stato del sistema sia rappresentato matematicamente da un operatore di densità Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \rho} . Allora la probabilità di ottenere la risposta Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle x} è data dalla regola di Born

  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle Pr\{A=x||\rho\}=Tr[\widehat{E}^A(x)\rho]=Tr[\widehat{E}^A(x)\rho\widehat{E}^A(x)]} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (5)}


e secondo il postulato della proiezione lo stato post-misurazione si ottiene tramite la trasformazione di stato:

  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \rho\rightarrow\rho_x=\frac{\widehat{E}^A(x)\rho\widehat{E}^A(x)}{Tr\widehat{E}^A(x)\rho\widehat{E}^A(x)} } Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (6)}


Per comodità del lettore, presentiamo queste formule per un puro stato iniziale Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \psi\in\mathcal{H}} . La regola di Born ha la forma:

  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle Pr\{A=x||\rho\}=||\widehat{E}^A(x)\psi||^2=<\psi\mid\widehat{E}^A(x)\psi>} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (7)}

La trasformazione di stato è data dal postulato della proiezione:

  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \psi\rightarrow\psi_x=\widehat{E}^A(x)\psi/\parallel\widehat{E}^A(x)\psi\parallel} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (8)}


Qui l'operatore osservabile Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{A}} (la sua decomposizione spettrale) determina in modo univoco le trasformazioni dello stato di feedback Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \mathcal{\Im}_A(x)} per i risultati Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle x }

  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \rho\rightarrow\Im_A(x)\rho=\widehat{E}^A(x)\rho\widehat{E}^A(x)} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (9)}

La mappa Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \rho\rightarrow\Im_A(x)} data dalla (9) è l'esempio più semplice (ma molto importante) di strumento quantistico.

  1. Von Neumann J. Mathematical Foundations of Quantum Mechanics Princeton Univ. Press, Princeton, NJ, USA (1955) Google Scholar