Difference between revisions of "Store:MTcondilo"
Line 1: | Line 1: | ||
===Condilo Mediotrusivo=== | ===Condilo Mediotrusivo=== | ||
Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>P1_{M}</math> e <math>P7_{M}</math>, e il segmento che unisce i punti <math>P1_{M}</math> e <math>R_p</math>. Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio. | |||
<Center> | |||
{| | |||
! colspan="5" |Tabella 5 | |||
|- | |- | ||
! | !Tracciato masticatorio | ||
!Markers!!Distanza | |||
(mm) | (mm) | ||
!Direzione | !Direzione | ||
( | (X--posteriore) | ||
!Direzione | !Direzione | ||
( | (Y--mediale) | ||
|- | |- | ||
| rowspan="8" |[[File:Mediotrusive angle.jpeg|400x400px|center]]'''Figura 5:''' | |||
|2||5.09||Protrusiva | |2||5.09||Protrusiva | ||
| | |Medializzazione | ||
|- | |- | ||
|3||14.81 | |3||14.81 | ||
|Protrusiva|| | |Protrusiva||Medializzazione | ||
|- | |- | ||
|4 | |4 | ||
|25.58||Protrusiva|| | |25.58||Protrusiva||Medializzazione | ||
|- | |- | ||
|5||26.54||Protrusiva|| | |5||26.54||Protrusiva||Inversione | ||
|- | |- | ||
|6||14.57||Protrusiva | |6||14.57||Protrusiva | ||
| | |Lateralizzazione | ||
|- | |||
|7* ||6.25||Protrusiva||Lateralizzazione | |||
|- | |- | ||
| | |8 | ||
|1.19 | |||
|Protrusiva | |||
|Lateralizzazione | |||
|- | |- | ||
| | | colspan="4" | | ||
|} | |} | ||
</Center> | |||
Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo abbiamo una distanza dal punto di partenza di 6.25 mm ed un angolo calcolato sull'arcoseno <math>\theta = \arccos(-0.971) \approx 166.43^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''. Per approfondire la procedura matematica vedi{{Tooltip|2=L'angolo tra due segmenti può essere calcolato utilizzando la trigonometria vettoriale. Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: il vettore tra il punto <math>P1_{M}</math> e il punto <math>P7_{M}</math>: <math>\vec{AB} = P7_{M}-P1_{M}=(1148.2,-124.6)-(1164.1,-64.2)=(-15.9,-60.4)</math>. Il vettore tra il punto <math>P1_{M}</math> e il punto di riferimento <math>R_p</math>: <math>\vec{AC}=R_p-P1_{M}=(1165,11.4)-(1164.1,-64.2)=(0.9,75.6)</math>. Questo metodo ci permette di rappresentare le relazioni angolari tra movimenti distinti nello spazio. Il prodotto scalare tra i vettori <math>\vec{AB}</math> e <math>\vec{AC}</math> è dato dalla formula: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>. Sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-15.9) \cdot (0.9) + (-60.4) \cdot (75.6) = -14.31 - 4566.24 = -4580.55</math>. Una volta eseguiti i passaggi trigonometrici e il prodotto scalare, si passa al calcolo della lunghezza del vettore: <math>|\vec{AB}| = \sqrt{AB_x^2 + AB_y^2} = \sqrt{(-15.9)^2 + (-60.4)^2} = \sqrt{252.81 + 3648.16} = \sqrt{3900.97} \approx 62.45</math>. Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math>. Sostituendo i valori: <math>\cos(\theta) = \frac{-4580.55}{62.45 \cdot 75.58} = \frac{-4580.55}{4717.25} \approx -0.971</math>. L'angolo <math>\theta</math> è calcolato tramite la funzione arccoseno: <math>\theta = \arccos(-0.971) \approx 166.43^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''.}} | Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo abbiamo una distanza dal punto di partenza di 6.25 mm ed un angolo calcolato sull'arcoseno <math>\theta = \arccos(-0.971) \approx 166.43^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''. Per approfondire la procedura matematica vedi{{Tooltip|2=L'angolo tra due segmenti può essere calcolato utilizzando la trigonometria vettoriale. Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: il vettore tra il punto <math>P1_{M}</math> e il punto <math>P7_{M}</math>: <math>\vec{AB} = P7_{M}-P1_{M}=(1148.2,-124.6)-(1164.1,-64.2)=(-15.9,-60.4)</math>. Il vettore tra il punto <math>P1_{M}</math> e il punto di riferimento <math>R_p</math>: <math>\vec{AC}=R_p-P1_{M}=(1165,11.4)-(1164.1,-64.2)=(0.9,75.6)</math>. Questo metodo ci permette di rappresentare le relazioni angolari tra movimenti distinti nello spazio. Il prodotto scalare tra i vettori <math>\vec{AB}</math> e <math>\vec{AC}</math> è dato dalla formula: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>. Sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-15.9) \cdot (0.9) + (-60.4) \cdot (75.6) = -14.31 - 4566.24 = -4580.55</math>. Una volta eseguiti i passaggi trigonometrici e il prodotto scalare, si passa al calcolo della lunghezza del vettore: <math>|\vec{AB}| = \sqrt{AB_x^2 + AB_y^2} = \sqrt{(-15.9)^2 + (-60.4)^2} = \sqrt{252.81 + 3648.16} = \sqrt{3900.97} \approx 62.45</math>. Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math>. Sostituendo i valori: <math>\cos(\theta) = \frac{-4580.55}{62.45 \cdot 75.58} = \frac{-4580.55}{4717.25} \approx -0.971</math>. L'angolo <math>\theta</math> è calcolato tramite la funzione arccoseno: <math>\theta = \arccos(-0.971) \approx 166.43^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''.}} | ||
<br /> | <br /> |
Revision as of 18:50, 8 December 2024
Condilo Mediotrusivo
Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti e , e il segmento che unisce i punti e . Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.
Tabella 5 | ||||
---|---|---|---|---|
Tracciato masticatorio | Markers | Distanza
(mm) |
Direzione
(X--posteriore) |
Direzione
(Y--mediale) |
Figura 5: | 2 | 5.09 | Protrusiva | Medializzazione |
3 | 14.81 | Protrusiva | Medializzazione | |
4 | 25.58 | Protrusiva | Medializzazione | |
5 | 26.54 | Protrusiva | Inversione | |
6 | 14.57 | Protrusiva | Lateralizzazione | |
7* | 6.25 | Protrusiva | Lateralizzazione | |
8 | 1.19 | Protrusiva | Lateralizzazione | |
Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo abbiamo una distanza dal punto di partenza di 6.25 mm ed un angolo calcolato sull'arcoseno . Infine, sottraendo questo angolo da 180°, otteniamo un angolo di , noto come Angolo di Bennett. Per approfondire la procedura matematica vedi L'angolo tra due segmenti può essere calcolato utilizzando la trigonometria vettoriale. Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: il vettore tra il punto e il punto : . Il vettore tra il punto e il punto di riferimento : . Questo metodo ci permette di rappresentare le relazioni angolari tra movimenti distinti nello spazio. Il prodotto scalare tra i vettori e è dato dalla formula: . Sostituendo i valori calcolati: . Una volta eseguiti i passaggi trigonometrici e il prodotto scalare, si passa al calcolo della lunghezza del vettore: . Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: . Sostituendo i valori: . L'angolo è calcolato tramite la funzione arccoseno: . Infine, sottraendo questo angolo da 180°, otteniamo un angolo di , noto come Angolo di Bennett.