|
|
Line 37: |
Line 37: |
| </math> mm e l'angolo <math> | | </math> mm e l'angolo <math> |
| \theta | | \theta |
| </math> è calcolato tramite la funzione arcoseno: | | </math> è calcolato tramite la funzione arcoseno: <math> |
| | |
| <math> | |
| \theta = \arccos(-0.0232) \approx 91.33^\circ | | \theta = \arccos(-0.0232) \approx 91.33^\circ |
| </math>. Per approfondire la procedura matematica vedi {{Tooltip|2={{Tooltip|2=I tre punti nello spazio 2D che ci interessano sono: <math>P1_{mm}</math> (punto 1 del molare mediotrusivo), <math>P7_{mm}</math> (punto 7 del molare mediotrusivo), <math>R_p</math> (punto di riferimento). Le loro coordinate sono: <math>P1_{mm} = (907.1, -852.5)</math>, <math>P7_{mm} = (817.2, -853.5)</math>, <math>R_p = (908.8, -711.5)</math>. Questi punti rappresentano posizioni specifiche all'interno di un sistema masticatorio che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>P1_{mm}</math> e <math>P7_{mm}</math>, e il segmento che unisce i punti <math>P1_{mm}</math> e <math>R_p</math>. Il vettore tra <math>P1_{mm}</math> e <math>P7_{mm}</math>: <math>\vec{AB} = P7_{mm} - P1_{mm} = (817.2, -853.5) - (907.1, -852.5) = (-89.9, -1.0)</math>. Il vettore tra <math>P1_{mm}</math> e <math>R_p</math>: <math>\vec{AC} = R_p - P1_{mm} = (908.8, -711.5) - (907.1, -852.5) = (1.7, 141.0)</math>. Prodotto scalare: <math>\vec{AB} \cdot \vec{AC} = (-89.9) \cdot (1.7) + (-1.0) \cdot (141.0) = -152.83 + (-141.0) = -293.83</math>. Le norme: <math>|\vec{AB}| = \sqrt{(-89.9)^2 + (-1.0)^2} = \sqrt{8083.01} \approx 89.88</math>, <math>|\vec{AC}| = \sqrt{(1.7)^2 + (141.0)^2} = \sqrt{19883.89} \approx 141.02</math>. Coseno dell'angolo: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|} = \frac{-293.83}{12676.82} \approx -0.0232</math>. Angolo: <math>\theta = \arccos(-0.0232) \approx 91.33^\circ</math>. Distanza lineare: <math>d = \sqrt{8083.01} \approx 89.88 \, \text{pixel}</math>. Convertendo in millimetri: <math>d = 89.88 \cdot 0.1 = 8.99 \, \text{mm}</math>.}}}} | | </math>. Per approfondire la procedura matematica vedi {{Tooltip|2=I tre punti nello spazio 2D sono <math>P1_{mm}</math> (punto 1 del molare mediotrusivo), <math>P7_{mm}</math> (punto 7 del molare mediotrusivo) e <math>R_p</math> (punto di riferimento), con coordinate <math>P1_{mm} = (907.1, -852.5)</math>, <math>P7_{mm} = (817.2, -853.5)</math>, <math>R_p = (908.8, -711.5)</math>. Il vettore tra <math>P1_{mm}</math> e <math>P7_{mm}</math> è <math>\vec{AB} = (-89.9, -1.0)</math>, mentre il vettore tra <math>P1_{mm}</math> e <math>R_p</math> è <math>\vec{AC} = (1.7, 141.0)</math>. Prodotto scalare: <math>\vec{AB} \cdot \vec{AC} = (-89.9) \cdot (1.7) + (-1.0) \cdot (141.0) = -152.83 - 141.0 = -293.83</math>. Norme: <math>|\vec{AB}| = \sqrt{(-89.9)^2 + (-1.0)^2} = \sqrt{8083.01} \approx 89.88</math>, <math>|\vec{AC}| = \sqrt{(1.7)^2 + (141.0)^2} = \sqrt{19883.89} \approx 141.02</math>. Coseno: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|} = \frac{-293.83}{89.88 \cdot 141.02} \approx -0.0232</math>.Angolo: <math>\theta = \arccos(-0.0232) \approx 91.33^\circ</math>. Distanza lineare: <math>d = \sqrt{8083.01} \approx 89.88 \, \text{pixel}</math>, convertita in millimetri: <math>d = 89.88 \cdot 0.1 = 8.99 \, \text{mm}</math>.}} |
| | | ==Conclusione della cinematica del molare mediotrusivo*== |
| | |
| | |
| | |
| I tre punti nello spazio 2D che ci interessano e cioè il punto <math>
| |
| P1_{mm}
| |
| </math> ( punto 1 del molare mediotrusivo), il <math>
| |
| P7_{mm}
| |
| </math> ( punto 7 del molare mediotrusivo) e del punto di riferimento <math>
| |
| R_p
| |
| </math><br />
| |
| *Coordinate <math>
| |
| P1_{mm}
| |
| </math> <math>
| |
| (907.1, -852.5)
| |
| </math>
| |
| *Coordinate <math>
| |
| P7_{mm}
| |
| </math> <math>
| |
| (817.2, -853.5)
| |
| </math>
| |
| *Coordinate <math>
| |
| R_p
| |
| </math> <math>
| |
| | |
| (908.8, -711.5)
| |
| </math>
| |
| | |
| | |
| Questi punti rappresentano tre posizioni specifiche all'interno di un sistema masticatorio che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>
| |
| P1_{mm}
| |
| </math> e <math>
| |
| P7_{mm}
| |
| </math>, e il segmento che unisce i punti <math>
| |
| P1_{mm}
| |
| </math>e <math>
| |
| R_p
| |
| </math> Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio. Lo stesso formalismo matematico dei precedente con ovvimanete, dati diversi si definiranno i vettori
| |
| Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti:*Il vettore tra il punto <math>P1_{mm}</math> e il punto<math>P7_{mm}</math>: <math>P7_{mm}\vec{AB} = P7_{mm} - P1_{mm} = (817.2, -853.5) - (907.1, -852.5) = (-89.9, -1.0)</math>.
| |
| | |
| Il vettore tra il punto <math>P1_{mm}</math> e il punto <math>R_p</math>: <math>\vec{AC} = R_p - P1_{mm} = (908.8, -711.5) - (907.1, -852.5) = (1.7, 141.0)</math>.
| |
| | |
| Il **prodotto scalare** tra i vettori è calcolato come: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>. Sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-89.9) \cdot (1.7) + (-1.0) \cdot (141.0) = -152.83 + (-141) = -293.83</math>.
| |
| | |
| Le norme (lunghezze) dei vettori sono: <math>|\vec{AB}| = \sqrt{AB_x^2 + AB_y^2} = \sqrt{(-89.9)^2 + (-1.0)^2} = \sqrt{8082.01 + 1.0} = \sqrt{8083.01} \approx 89.88</math> e <math>|\vec{AC}| = \sqrt{AC_x^2 + AC_y^2} = \sqrt{(1.7)^2 + (141.0)^2} = \sqrt{2.89 + 19881.0} = \sqrt{19883.89} \approx 141.02</math>.
| |
| | |
| Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math>. Sostituendo i valori: <math>\cos(\theta) = \frac{-293.83}{89.88 \cdot 141.02} = \frac{-293.83}{12676.82} \approx -0.0232</math><nowiki>.}}</nowiki>
| |
| | |
| | |
| | |
| Infine,la distanza lineare tra il punto 1 ed il punto 7* è risultata essere <math>
| |
| 8.99
| |
| </math> mm e l'angolo <math>
| |
| \theta
| |
| </math> è calcolato tramite la funzione arcoseno:
| |
| | |
| <math>
| |
| \theta = \arccos(-0.0232) \approx 91.33^\circ
| |
| </math>
| |
| | |
| | |
| == Conclusione della cinematica del molare mediotrusivo== | |
| L'analisi del movimento articolare del molare controlaterale, sul lato mediotrusivo, rivela informazioni importanti sulla dinamica e sull'adattamento del molare durante i movimenti masticatori laterali. Calcolando le distanze e gli angoli tra punti chiave con l'uso della trigonometria vettoriale, è possibile ottenere una rappresentazione dettagliata del comportamento biomeccanico e della stabilità del molare controlaterale in relazione al movimento mandibolare. | | L'analisi del movimento articolare del molare controlaterale, sul lato mediotrusivo, rivela informazioni importanti sulla dinamica e sull'adattamento del molare durante i movimenti masticatori laterali. Calcolando le distanze e gli angoli tra punti chiave con l'uso della trigonometria vettoriale, è possibile ottenere una rappresentazione dettagliata del comportamento biomeccanico e della stabilità del molare controlaterale in relazione al movimento mandibolare. |
|
| |
|
Molare controlaterale
Distanza dei punti in millimetri e direzioni
Punto |
Distanza (mm)
|
Direzione in X
(antero-posteriore)
|
Direzione in Y
(latero-mediale)
|
2 |
1.11
|
Avanti |
Laterale
|
3 |
3.89
|
Avanti |
Laterale
|
4 |
7.76
|
Avanti |
Laterale
|
5 |
13.75
|
Avanti |
Laterale
|
6 |
15.71
|
Indietro |
Laterale
|
7* |
8.99
|
Indietro |
Laterale
|
8 |
2.43
|
Indietro |
Laterale
|
Come per i precedenti la distanza lineare tra il punto 1 ed il punto 7* è risultata essere mm e l'angolo è calcolato tramite la funzione arcoseno: . Per approfondire la procedura matematica vedi I tre punti nello spazio 2D sono (punto 1 del molare mediotrusivo), (punto 7 del molare mediotrusivo) e (punto di riferimento), con coordinate , , . Il vettore tra e è , mentre il vettore tra e è . Prodotto scalare: . Norme: , . Coseno: .Angolo: . Distanza lineare: , convertita in millimetri: .
Conclusione della cinematica del molare mediotrusivo*
L'analisi del movimento articolare del molare controlaterale, sul lato mediotrusivo, rivela informazioni importanti sulla dinamica e sull'adattamento del molare durante i movimenti masticatori laterali. Calcolando le distanze e gli angoli tra punti chiave con l'uso della trigonometria vettoriale, è possibile ottenere una rappresentazione dettagliata del comportamento biomeccanico e della stabilità del molare controlaterale in relazione al movimento mandibolare.
Le distanze lineari tra i punti, riportate in millimetri, evidenziano una complessa sequenza di spostamenti in direzione antero-posteriore e latero-mediale. In particolare, il movimento del molare è influenzato dalla posizione e dalla traiettoria del condilo controlaterale, con transizioni tra avanzamenti e arretramenti che riflettono il percorso anatomico e le influenze muscolari che guidano il movimento.
Dal punto di vista angolare, il calcolo dell'angolo di circa 91.33° indica un movimento quasi perpendicolare rispetto ai segmenti di riferimento, suggerendo che il molare controlaterale mantiene una posizione relativamente stabile rispetto all'asse antero-posteriore durante il movimento mediotrusivo. Un angolo così vicino ai 90° può essere indicativo di un bilanciamento tra le forze che agiscono sul molare, assicurando la necessaria stabilità laterale e contribuendo alla funzione masticatoria in modo ottimale.
Questa analisi matematica del molare controlaterale fornisce un quadro chiaro delle dinamiche masticatorie che influenzano questo punto specifico. L'applicazione del prodotto scalare e del calcolo vettoriale per determinare angoli e distanze supporta una comprensione più profonda delle interazioni articolari, essenziale per identificare eventuali disfunzioni e per guidare i trattamenti di riabilitazione. I risultati di questa analisi non solo contribuiscono alla diagnosi e alla gestione dei disturbi temporomandibolari, ma possono anche migliorare la pianificazione terapeutica nei casi in cui è richiesta una stabilizzazione o una correzione della funzione masticatoria.