Difference between revisions of "Store:MTcondilo"

 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
===Condilo Mediotrusivo===
===Condilo Mediotrusivo===
'''Descrizione focalizzata dell'analisi matematica dei punti'''


* '''Punti e coordinate coinvolte'''
Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>P1_{M}</math> e <math>P7_{M}</math>, e il segmento che unisce i punti <math>P1_{M}</math> e <math>R_p</math>. Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.
** Nel contesto della nostra analisi, abbiamo tre punti nel piano 2D (<math>X,Y</math>)che ci interessano:
** Coordinate <math>P1_{M}</math> del punto 1 del condilo mediotrusivo: <math>(1164.1, -64.2)</math>
**Coordinate <math>P7_{M}</math> del punto 7 del condilo mediotrusivo: <math>(1148.2, -124.6)</math>
**Coordinate <math>R_p</math> del punto di riferimento del condilo mediotrusivo: <math>(1165, 11.4)</math>






Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>P1_{M}</math> e <math>P7_{M}</math>, e il segmento che unisce i punti <math>P1_{M}</math> e <math>R_p</math>. Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio. [[File:Mediotrusive angle.jpeg|left|thumb|300x300px]]
----
<br />
===Condilo Mediotrusivo===


{| class="wikitable"
Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>P1_{M}</math> e <math>P7_{M}</math>, e il segmento che unisce i punti <math>P1_{M}</math> e <math>R_p</math>. Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.
 
<Center>
{|
! colspan="5" |Tabella 5
|-
|-
!Punto!!Distanza
!Tracciato masticatorio
(mm)
!Markers!!Distanza (mm)!!Direzione in X (antero-posteriore)!!Direzione (Y-latero-mediale)
!Direzione in X  
(antero-posteriore)
!Direzione in Y  
(latero-mediale)
|-
|-
|2||5.09||Protrusiva
| rowspan="8" |[[File:Figura condilo mediotrusivo mod..jpg|center|408x408px]]'''Figura 5:'''
|Mediale
|2||5.09||Protrusiva||Medializzazione
|-
|-
|3||14.81
|3||14.81||Protrusiva||Medializzazione
|Protrusiva||Mediale
|-
|-
|4
|4||25.58||Protrusiva||Medializzazione
|25.58||Protrusiva||Mediale
|-
|-
|5||26.54||Protrusiva||Mediale
|5||26.54||Protrusiva||Inversione
|-
|-
|6||14.57||Protrusiva
|6||14.57||Protrusiva||Lateralizzazione
|Mediale
|-
|-
|7*||6.25||Protrusiva|| Mediale
|7*||6.25||Protrusiva||Lateralizzazione
|-
|-
|8 ||1.19||Protrusiva||Mediale
|8||1.19||Protrusiva||Lateralizzazione
|-
| colspan="4" |
|}
|}
Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo abbiamo una distanza dal punto di partenza di 6.25 mm ed un angolo calcolato sull'arcoseno <math>\theta = \arccos(-0.971) \approx 166.43^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''. Per approfondire la procedura matematica vedi{{Tooltip|2=L'angolo tra due segmenti può essere calcolato utilizzando la trigonometria vettoriale. Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: il vettore tra il punto <math>P1_{M}</math> e il punto <math>P7_{M}</math>: <math>\vec{AB} = P7_{M}-P1_{M}=(1148.2,-124.6)-(1164.1,-64.2)=(-15.9,-60.4)</math>. Il vettore tra il punto <math>P1_{M}</math> e il punto di riferimento <math>R_p</math>: <math>\vec{AC}=R_p-P1_{M}=(1165,11.4)-(1164.1,-64.2)=(0.9,75.6)</math>. Questo metodo ci permette di rappresentare le relazioni angolari tra movimenti distinti nello spazio. Il prodotto scalare tra i vettori <math>\vec{AB}</math> e <math>\vec{AC}</math> è dato dalla formula: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>. Sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-15.9) \cdot (0.9) + (-60.4) \cdot (75.6) = -14.31 - 4566.24 = -4580.55</math>. Una volta eseguiti i passaggi trigonometrici e il prodotto scalare, si passa al calcolo della lunghezza del vettore: <math>|\vec{AB}| = \sqrt{AB_x^2 + AB_y^2} = \sqrt{(-15.9)^2 + (-60.4)^2} = \sqrt{252.81 + 3648.16} = \sqrt{3900.97} \approx 62.45</math>. Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math>. Sostituendo i valori: <math>\cos(\theta) = \frac{-4580.55}{62.45 \cdot 75.58} = \frac{-4580.55}{4717.25} \approx -0.971</math>. L'angolo <math>\theta</math> è calcolato tramite la funzione arccoseno: <math>\theta = \arccos(-0.971) \approx 166.43^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''.}}
</Center>
 
Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo abbiamo una distanza dal punto di partenza di 6.25 mm ed un angolo calcolato sull'arcoseno <math>\theta = \arccos(-0.971) \approx 166^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''. Per approfondire la procedura matematica vedi {{Tooltip|2=L'angolo tra due segmenti può essere calcolato utilizzando la trigonometria vettoriale. Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: il vettore tra il punto <math>P1_{M}</math> e il punto <math>P7_{M}</math>: <math>\vec{AB} = P7_{M}-P1_{M}=(522.5, -87)-(530.6, -61.8)=(-8.1, -25.2)</math>. Il vettore tra il punto <math>P1_{M}</math> e il punto di riferimento <math>R_p</math>: <math>\vec{AC}=R_p-P1_{M}=(530.8, -9.3)-(530.6, -61.8)=(0.2, 52.5)</math>. Il prodotto scalare tra i vettori <math>\vec{AB}</math> e <math>\vec{AC}</math> è dato dalla formula: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>. Sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-8.1) \cdot (0.2) + (-25.2) \cdot (52.5) = -1.62 - 1323.0 = -1324.62</math>. Le norme dei vettori sono: <math>|\vec{AB}| = \sqrt{(-8.1)^2 + (-25.2)^2} = \sqrt{65.61 + 635.04} = \sqrt{700.65} \approx 26.47</math> e <math>|\vec{AC}| = \sqrt{(0.2)^2 + (52.5)^2} = \sqrt{0.04 + 2756.25} = \sqrt{2756.29} \approx 52.50</math>. Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math>. Sostituendo i valori: <math>\cos(\theta) = \frac{-1324.62}{26.47 \cdot 52.50} = \frac{-1324.62}{1388.68} \approx -0.971</math>. L'angolo <math>\theta</math> è calcolato tramite la funzione arccoseno: <math>\theta = \arccos(-0.971) \approx 166.43^\circ</math>. Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''.}}  


'''Conclusione della Cinematica Condilare Mediortusiva'''


Nel sistema masticatorio, il condilo mediotrusivo segue una traiettoria complessa che contribuisce all'equilibrio dinamico durante i movimenti mandibolari laterali. I punti analizzati <math>P1_{M}</math>, <math>P7_{M}</math> e il punto di riferimento <math>R_p</math> rappresentano posizioni articolari chiave lungo il tragitto del condilo mediotrusivo. Studiare questi punti permette di calcolare l'angolo tra due segmenti definiti, essenziali per comprendere i vettori di forza e l'orientamento della mandibola in movimento. In sintesi, l’angolo calcolato tra i punti analizzati del condilo mediotrusivo non solo rappresenta un parametro meccanico, ma funge da indicatore di stabilità e simmetria del sistema masticatorio. Le variazioni angolari rispetto al valore fisiologico suggeriscono l’esistenza di forze anomale o alterazioni che possono influenzare la cinematica mandibolare e potenzialmente contribuire a patologie articolari, offrendo un potenziale punto di osservazione per diagnosi più accurate e interventi clinici mirati.
<br />
<br />

Latest revision as of 20:03, 13 December 2024

Condilo Mediotrusivo

Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti e , e il segmento che unisce i punti e . Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.



Condilo Mediotrusivo

Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti e , e il segmento che unisce i punti e . Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.

Tabella 5
Tracciato masticatorio Markers Distanza (mm) Direzione in X (antero-posteriore) Direzione (Y-latero-mediale)
Figura condilo mediotrusivo mod..jpg
Figura 5:
2 5.09 Protrusiva Medializzazione
3 14.81 Protrusiva Medializzazione
4 25.58 Protrusiva Medializzazione
5 26.54 Protrusiva Inversione
6 14.57 Protrusiva Lateralizzazione
7* 6.25 Protrusiva Lateralizzazione
8 1.19 Protrusiva Lateralizzazione

Per quanto riguarda le distanze e la direzione del punto 7 nel condilo mediotrusivo abbiamo una distanza dal punto di partenza di 6.25 mm ed un angolo calcolato sull'arcoseno . Infine, sottraendo questo angolo da 180°, otteniamo un angolo di , noto come Angolo di Bennett. Per approfondire la procedura matematica vedi  Info.pngL'angolo tra due segmenti può essere calcolato utilizzando la trigonometria vettoriale. Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: il vettore tra il punto e il punto : . Il vettore tra il punto e il punto di riferimento : . Il prodotto scalare tra i vettori e è dato dalla formula: . Sostituendo i valori calcolati: . Le norme dei vettori sono: e . Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: . Sostituendo i valori: . L'angolo è calcolato tramite la funzione arccoseno: . Infine, sottraendo questo angolo da 180°, otteniamo un angolo di , noto come Angolo di Bennett.