Difference between revisions of "Store:MTcondilo"

 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
===Condilo Mediotrusivo===
'''Descrizione focalizzata dell'analisi matematica dei punti'''


----
* '''Punti e coordinate coinvolte'''
==Mediotrusive==
** Nel contesto della nostra analisi, abbiamo tre punti nello spazio 2D che ci interessano:
** Coordinate <math>P1_{M}</math> del punto 1 del condilo mediotrusivo: <math>(1164.1, -64.2)</math>
**Coordinate <math>P7_{M}</math> del punto 7 del condilo mediotrusivo: <math>(1148.2, -124.6)</math>
**Coordinate <math>R_p</math> del punto di riferimento del condilo mediotrusivo: <math>(1165, 11.4)</math>


===Descrizione focalizzata dell'analisi matematica dei punti===


====Punti e coordinate coinvolte====


Nel contesto della nostra analisi, abbiamo tre punti nello spazio 2D che ci interessano:
Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>P1_{M}</math> e <math>P7_{M}</math>, e il segmento che unisce i punti <math>P1_{M}</math> e <math>R_p</math>. Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio. [[File:Mediotrusive angle.jpeg|left|thumb|300x300px]]
 
*Coordinate <math>P1_{M}</math> del punto 1 del condilo mediotrusivo: <math>(1164.1, -64.2)</math>
*Coordinate <math>P7_{M}</math> del punto 7 del condilo mediotrusivo: <math>(1148.2, -124.6)</math>
*Coordinate <math>H3_{M}</math> del punto di riferimento del condilo mediotrusivo: <math>(1165, 11.4)</math>
 
Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti <math>P1_{M}</math> e <math>P7_{M}</math>, e il segmento che unisce i punti <math>P1_{M}</math> e <math>H3_{M}</math>. Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio. [[File:Mediotrusive angle.jpeg|left|thumb|300x300px]]
<br />
<br />


{| class="wikitable"
{| class="wikitable"
|-
|-
!Punto!!Distanza (pixel) !! Distanza (mm)!!Direzione in X (antero-posteriore)!!Direzione in Y (latero-mediale)
!Punto!!Distanza
(mm)
!Direzione in X  
(antero-posteriore)
!Direzione in Y  
(latero-mediale)
|-
|-
|2||50.92||5.09||Indietro||Mediale
|2||5.09||Protrusiva
|Mediale
|-
|-
|3||148.05||14.81||Indietro|| Mediale
|3||14.81
|Protrusiva||Mediale
|-
|-
|4 ||255.81||25.58||Indietro||Mediale
|4
|25.58||Protrusiva||Mediale
|-
|-
|5||265.43||26.54|| Indietro||Mediale
|5||26.54||Protrusiva||Mediale
|-
|-
|6|| 145.68||14.57||Indietro ||Mediale
|6||14.57||Protrusiva
|Mediale
|-
|-
|7*||62.45||6.25 ||Indietro||Mediale
|7*||6.25||Protrusiva|| Mediale
|-
|-
|8||11.87||1.19||Indietro||Mediale
|8 ||1.19||Protrusiva||Mediale
|}
|}


====Iter matematico per il calcolo dell'angolo====
====Iter matematico per il calcolo dell'angolo====


L'angolo tra due segmenti può essere calcolato utilizzando la {{Tooltip|trigonometria vettoriale|Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti:
L'angolo tra due segmenti può essere calcolato utilizzando la trigonometria vettoriale  {{Tooltip|2=Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: Il vettore tra il punto <math>P1_{M}</math> e il punto <math>P7_{M}</math>: <math>\vec{AB} = P7_{M}-P1_{M}=(1148.2,-124.6)-(1164.1,-64.2)=(-15.9,-60.4)</math>. Il vettore tra il punto <math>P1_{M}</math> e il punto di riferimento <math>R_p</math>: <math>\vec{AC}=R_p-P1_{M}=(1165,11.4)-(1164.1,-64.2)=(0.9,75.6)</math>.Questo metodo ci permette di rappresentare le relazioni angolari tra movimenti distinti nello spazio.|3=2}} ed il prodotto scalare {{Tooltip|2=Il prodotto scalare tra due vettori <math>\vec{AB}</math> e <math>\vec{AC}</math> è dato dalla formula: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>. Sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-15.9) \cdot (0.9) + (-60.4) \cdot (75.6) = -14.31 - 4566.24 = -4580.55</math>.Una volta eseguiti i passaggi trigonometrici e il prodotto scalare, si passa al calcolo della lunghezza del vettore: <math>|\vec{AB}| = \sqrt{AB_x^2 + AB_y^2} = \sqrt{(-15.9)^2 + (-60.4)^2} = \sqrt{252.81 + 3648.16} = \sqrt{3900.97} \approx 62.45</math>.|3=2}}
 
* Il vettore tra il punto <math>P1_{M}</math> e il punto <math>P7_{M}</math>: <math>\vec{AB} = P7_{M} - P1_{M} = (1148.2, -124.6) - (1164.1, -64.2) = (-15.9, -60.4)</math>
* Il vettore tra il punto <math>P1_{M}</math> e il punto <math>H3_{M}</math>: <math>\vec{AC} = H3_{M} - P1_{M} = (1165, 11.4) - (1164.1, -64.2) = (0.9, 75.6)</math>
 
Questo metodo ci permette di rappresentare le relazioni angolari tra movimenti distinti nello spazio.}} ed {{Tooltip|il Prodotto scalare|Il prodotto scalare tra due vettori \(\vec{AB}\) e \(\vec{AC}\) è dato dalla formula:


<math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>
Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori {{Tooltip|2=<math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math>. Sostituendo i valori: <math>\cos(\theta) = \frac{-4580.55}{62.45 \cdot 75.58} = \frac{-4580.55}{4717.25} \approx -0.971</math><nowiki>.|3=2}} 


Sostituendo i valori calcolati:
<math>\vec{AB} \cdot \vec{AC} = (-15.9) \cdot (0.9) + (-60.4) \cdot (75.6) = -14.31 - 4566.24 = -4580.55</math>.}}
Una volta eseguiti i passaggi trigonometrici ed il prodotto scalare si passa al calcolo della {{Tooltip|norma|La norma (o lunghezza) di ciascun vettore è calcolata utilizzando la formula della lunghezza del vettore:}}
<math>|\vec{AB}| = \sqrt{AB_x^2 + AB_y^2} = \sqrt{(-15.9)^2 + (-60.4)^2} = \sqrt{252.81 + 3648.16} = \sqrt{3900.97} \approx 62.45</math> 
<math>|\vec{AC}| = \sqrt{AC_x^2 + AC_y^2} = \sqrt{(0.9)^2 + (75.6)^2} = \sqrt{0.81 + 5710.56} = \sqrt{5711.37} \approx 75.58</math>
Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori:
<math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math> 
Sostituendo i valori:
<math>\cos(\theta) = \frac{-4580.55}{62.45 \cdot 75.58} = \frac{-4580.55}{4717.25} \approx -0.971</math> 
L'angolo <math>\theta</math> è calcolato tramite la funzione arccoseno:   
L'angolo <math>\theta</math> è calcolato tramite la funzione arccoseno:   
<math>\theta = \arccos(-0.971)</math>
====Motivo dell'analisi====


L'obiettivo dell'analisi è determinare l'angolo tra due movimenti all'interno di un sistema articolare, in particolare nell'area di studio della cinematica masticatoria. La comprensione di questi angoli ci consente di:
<math>\theta = \arccos(-0.971) \approx 166.43^\circ</math>.


1. **Valutare la dinamica mandibolare**: Calcolare gli angoli tra i segmenti mandibolari può fornire informazioni essenziali su come la mandibola si sposta durante il movimento, aiutando a descrivere i pattern del movimento articolare.
Infine, sottraendo questo angolo da 180°, otteniamo un angolo di <math>13.57^\circ</math>, noto come '''Angolo di Bennett'''.
 
2. **Modellare la biomeccanica del sistema masticatorio**: Gli angoli tra i punti permettono di costruire modelli accurati che simulano il comportamento meccanico del sistema mandibolare, utilizzabili in applicazioni cliniche per diagnosi e trattamenti.
 
3. **Confrontare con angoli standard**: Gli angoli misurati possono essere confrontati con valori normali o patologici per identificare eventuali alterazioni nei movimenti mandibolari che potrebbero indicare disturbi dell'articolazione temporomandibolare (ATM).


Questo calcolo è fondamentale per fornire una descrizione matematica precisa della cinetica mandibolare e per migliorare la modellazione biomeccanica di strutture orofacciali, cruciali per la diagnosi e l'intervento clinico.


==Conclusione==
Il tracciato lateroretrusivo del punto molare laterotrusivo, anziché un arco puramente laterale, suggerisce un'interazione complessa tra il condilo laterotrusivo e il movimento del condilo mediotrusivo. Questo fenomeno può essere spiegato come un’interferenza causata dal tragitto orbitante del condilo mediotrusivo, oltre che da una componente retrusiva intrinseca al condilo laterotrusivo stesso.


'''Conclusione della Cinematica Condilare Mediortusiva'''


Nel sistema masticatorio, il condilo mediotrusivo segue una traiettoria complessa che contribuisce all'equilibrio dinamico durante i movimenti mandibolari laterali. I punti analizzati <math>P1_{M}</math>, <math>P7_{M}</math> e il punto di riferimento <math>R_p</math> rappresentano posizioni articolari chiave lungo il tragitto del condilo mediotrusivo. Studiare questi punti permette di calcolare l'angolo tra due segmenti definiti, essenziali per comprendere i vettori di forza e l'orientamento della mandibola in movimento. In sintesi, l’angolo calcolato tra i punti analizzati del condilo mediotrusivo non solo rappresenta un parametro meccanico, ma funge da indicatore di stabilità e simmetria del sistema masticatorio. Le variazioni angolari rispetto al valore fisiologico suggeriscono l’esistenza di forze anomale o alterazioni che possono influenzare la cinematica mandibolare e potenzialmente contribuire a patologie articolari, offrendo un potenziale punto di osservazione per diagnosi più accurate e interventi clinici mirati.
<br />
<br />

Latest revision as of 20:25, 1 November 2024

Condilo Mediotrusivo

Descrizione focalizzata dell'analisi matematica dei punti

  • Punti e coordinate coinvolte
    • Nel contesto della nostra analisi, abbiamo tre punti nello spazio 2D che ci interessano:
    • Coordinate del punto 1 del condilo mediotrusivo:
    • Coordinate del punto 7 del condilo mediotrusivo:
    • Coordinate del punto di riferimento del condilo mediotrusivo:


Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti e , e il segmento che unisce i punti e . Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.

Mediotrusive angle.jpeg


Punto Distanza

(mm)

Direzione in X

(antero-posteriore)

Direzione in Y

(latero-mediale)

2 5.09 Protrusiva Mediale
3 14.81 Protrusiva Mediale
4 25.58 Protrusiva Mediale
5 26.54 Protrusiva Mediale
6 14.57 Protrusiva Mediale
7* 6.25 Protrusiva Mediale
8 1.19 Protrusiva Mediale

Iter matematico per il calcolo dell'angolo

L'angolo tra due segmenti può essere calcolato utilizzando la trigonometria vettoriale  Info.pngInnanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: Il vettore tra il punto e il punto : . Il vettore tra il punto e il punto di riferimento : .Questo metodo ci permette di rappresentare le relazioni angolari tra movimenti distinti nello spazio. ed il prodotto scalare  Info.pngIl prodotto scalare tra due vettori e è dato dalla formula: . Sostituendo i valori calcolati: .Una volta eseguiti i passaggi trigonometrici e il prodotto scalare, si passa al calcolo della lunghezza del vettore: .

Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori  Info.png. Sostituendo i valori: <nowiki>.

L'angolo è calcolato tramite la funzione arccoseno:

.

Infine, sottraendo questo angolo da 180°, otteniamo un angolo di , noto come Angolo di Bennett.


Conclusione della Cinematica Condilare Mediortusiva

Nel sistema masticatorio, il condilo mediotrusivo segue una traiettoria complessa che contribuisce all'equilibrio dinamico durante i movimenti mandibolari laterali. I punti analizzati , e il punto di riferimento rappresentano posizioni articolari chiave lungo il tragitto del condilo mediotrusivo. Studiare questi punti permette di calcolare l'angolo tra due segmenti definiti, essenziali per comprendere i vettori di forza e l'orientamento della mandibola in movimento. In sintesi, l’angolo calcolato tra i punti analizzati del condilo mediotrusivo non solo rappresenta un parametro meccanico, ma funge da indicatore di stabilità e simmetria del sistema masticatorio. Le variazioni angolari rispetto al valore fisiologico suggeriscono l’esistenza di forze anomale o alterazioni che possono influenzare la cinematica mandibolare e potenzialmente contribuire a patologie articolari, offrendo un potenziale punto di osservazione per diagnosi più accurate e interventi clinici mirati.