Store:QLMfr14
8.2. Fonctions biologiques dans le cadre de Markov quantique
Nous nous tournons vers la dynamique du système ouvert avec l'équation GKSL. Dans notre modélisation, Hamiltonian et Lindbladian représentent une fonction biologique spéciale (voir Khrennikov et al., 2018)[1] pour plus de détails. Son fonctionnement résulte de l'interaction des flux d'informations internes et externes. Dans les sections 10, 11.3, est une fonction psychologique; dans le cas le plus simple représente une question posée à (disons est un être humain). Dans la section 7, est la régulation génique du métabolisme du glucose/lactose dans la bactérie Escherichia coli. Dans les sections 9, 11.2, représente le processus de mutation épigénétique. Symboliquement, la fonction biologique est représentée comme une observable quantique : opérateur Hermitien avec la décomposition spectrale , où marque les sorties de . La théorie de la dynamique des états quantiques de Markov décrit le processus de génération de ces sorties.
Dans le modèle mathématique (Asano et al., 2015b,[2] Asano et al., 2017b,[3] Asano et al., 2017a,[4] Asano et al., 2015a,[5] Asano et al., 2012b,[6] Asano et al., 2011,[7] Asano et al. ., 2012a[8]), les sorties de la fonction biologique sont générées en approchant un état stable de la dynamique GKSL :
telle qu'elle corresponde à la décomposition spectrale de , i.e.,
où
Cela signifie que est diagonal dans une base orthonormée constituée de vecteurs propres de . Cet état, ou plus précisément cette décomposition de l'opérateur de densité , est le mélange statistique classique des états d'information de base déterminant cette fonction biologique. Les probabilités dans la décomposition de l'état (26) sont interprétées statistiquement.
Considérons un grand ensemble de biosystèmes avec l'état interagissant avec l'environnement . (Nous rappelons que mathématiquement l'interaction est codée dans le Lindbladian ) Résultant de cette interaction, la fonction biologique produit la sortie avec probabilité . Nous remarquons que dans l'opérateur termes la probabilité est exprimée par
Cette interprétation peut être appliquée même à un seul biosystème qui rencontre plusieurs fois le même environnement. Il convient de noter que l'état limite exprime la stabilité par rapport à l'influence de l'environnement concret . Bien sûr, dans le monde réel, l'état limite ne serait jamais approché. La formule mathématique (25) décrit le processus de stabilisation, d'amortissement des fluctuations. Mais, ils ne disparaîtraient jamais complètement avec le temps.
Nous notons qu'un état stationnaire satisfait l'équation GKSL stationnaire :
Il est également important de souligner que généralement un état stationnaire de l'équation maîtresse quantique n'est pas unique, il dépend de la classe des conditions initiales.
- ↑ Khrennikov A., Basieva I., Pothos E.M., Yamato I. Quantum Probability in Decision Making from Quantum Information Representation of Neuronal States, Sci. Rep., 8 (2018), Article 16225
- ↑ Asano M., Khrennikov A., Ohya M., Tanaka Y., Yamato I. Quantum Adaptivity in Biology: From Genetics To Cognition Springer, Heidelberg-Berlin-New York(2015)
- ↑ Asano M., Basieva I., Khrennikov A., Yamato I. A model of differentiation in quantum bioinformatics. Prog. Biophys. Mol. Biol., 130 (Part A)(2017), pp. 88-98
- ↑ Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y. A quantum-like model of selection behavior. J. Math. Psychol., 78 (2017), pp. 2-12
- ↑ Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y., Yamato I. Quantum information biology: from information interpretation of quantum mechanics to applications in molecular biology and cognitive psychology. Found. Phys., 45 (10) (2015), pp. 1362-1378
- ↑ Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y., Yamato I. Towards modeling of epigenetic evolution with the aid of theory of open quantum systems AIP Conf. Proc., 1508 (2012), p. 75
- ↑ Asano M., Ohya M., Tanaka Y., BasievaI., Khrennikov A. Quantum-like model of brain’s functioning: decision making from decoherence. J. Theor. Biol., 281 (1) (2011), pp. 56-64
- ↑ Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y., I Yamato quantum-like model for the adaptive dynamics of the genetic regulation of e. coli’s metabolism of glucose/lactose Syst. Synth. Biol., 6 (2012), pp. 1-7