Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,119
edits
Line 56: | Line 56: | ||
Per quanto riguarda i tracciati nell'area dell'incisivo tra il punto <math>P_1</math> e <math>P_7</math>, la distanza risulta essere di **13.42 mm** con un angolo approssimativamente pari a **82°**. Per approfondimenti di calcolo, vedi la spiegazione dettagliata qui sotto. | Per quanto riguarda i tracciati nell'area dell'incisivo tra il punto <math>P_1</math> e <math>P_7</math>, la distanza risulta essere di **13.42 mm** con un angolo approssimativamente pari a **82°**. Per approfondimenti di calcolo, vedi la spiegazione dettagliata qui sotto. | ||
{{Tooltip|2=Coordinate dei punti: | {{Tooltip|2=Coordinate dei punti: <math>P_1 = (305.4, -520.0)</math>, <math>P_7 = (257.5, -515.7)</math>, <math>R_p = (305.4, -439.3)</math>. Il vettore tra <math>P_1</math> e <math>P_7</math> è: <math>\vec{AB} = P_7 - P_1 = (257.5, -515.7) - (305.4, -520.0) = (-47.9, 4.3)</math>. Il vettore tra <math>P_1</math> e <math>R_p</math> è: <math>\vec{AC} = R_p - P_1 = (305.4, -439.3) - (305.4, -520.0) = (0, 80.7)</math>. Il prodotto scalare tra i vettori è calcolato come: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y = (-47.9) \cdot 0 + (4.3) \cdot (80.7) = 0 + 347.01 = 347.01</math>. Le norme dei vettori sono: <math>|\vec{AB}| = \sqrt{(-47.9)^2 + (4.3)^2} = \sqrt{2294.41 + 18.49} = \sqrt{2312.90} \approx 48.10</math> e <math>|\vec{AC}| = \sqrt{(0)^2 + (80.7)^2} = \sqrt{0 + 6508.49} = \sqrt{6508.49} \approx 80.7</math>. Il coseno dell'angolo tra i vettori è dato da: <math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|} = \frac{347.01}{48.10 \cdot 80.7} = \frac{347.01}{3879.87} \approx 0.0895</math>. Infine, l'angolo è: <math>\theta = \arccos(0.0895) \approx 82^\circ</math>.}} | ||
<math>P_1 = (305.4, -520.0)</math>, | |||
<math>P_7 = (257.5, -515.7)</math>, | |||
<math>R_p = (305.4, -439.3)</math>. | |||
Il vettore tra <math>P_1</math> e <math>P_7</math> è: | |||
<math>\vec{AB} = P_7 - P_1 = (257.5, -515.7) - (305.4, -520.0) = (-47.9, 4.3)</math>. | |||
Il vettore tra <math>P_1</math> e <math>R_p</math> è: | |||
<math>\vec{AC} = R_p - P_1 = (305.4, -439.3) - (305.4, -520.0) = (0, 80.7)</math>. | |||
Il prodotto scalare tra i vettori è calcolato come: | |||
<math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y = (-47.9) \cdot 0 + (4.3) \cdot (80.7) = 0 + 347.01 = 347.01</math>. | |||
Le norme dei vettori sono: | |||
<math>|\vec{AB}| = \sqrt{(-47.9)^2 + (4.3)^2} = \sqrt{2294.41 + 18.49} = \sqrt{2312.90} \approx 48.10</math> | |||
<math>|\vec{AC}| = \sqrt{(0)^2 + (80.7)^2} = \sqrt{0 + 6508.49} = \sqrt{6508.49} \approx 80.7</math>. | |||
Il coseno dell'angolo tra i vettori è dato da: | |||
<math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|} = \frac{347.01}{48.10 \cdot 80.7} = \frac{347.01}{3879.87} \approx 0.0895</math>. | |||
Infine, l'angolo è: | Infine, l'angolo è: | ||
<math>\theta = Il risultato lineare ed angolare è di **13.42 mm** rispetto al punto golare è di **1 e con un angolo approssimativamente pari a **82°**. | <nowiki><math>\theta = Il risultato lineare ed angolare è di **13.42 mm** rispetto al punto golare è di **1 e con un angolo approssimativamente pari a **82°**.}}</nowiki> |
edits