Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,785
edits
Line 62: | Line 62: | ||
Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: {{Tooltip|'''Prodotto scalare'''|Sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-89.5) \cdot (2.5) + (28.5) \cdot (161.8) = -223.75 + 4601.3 = 4377.55</math> |2}} Il **prodotto scalare** tra due vettori <math>\vec{AB}</math> e <math>\vec{AC }</math> è dato dalla formula: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>{{Tooltip|'''Calcolo delle norme'''| <math>|\vec{AB}| = \sqrt{AB_x^2 + AB_y^2} = \sqrt{(-89.5)^2 + (28.5)^2} = \sqrt{8010.25 + 812.25} = \sqrt{8822.5} \approx 93.96</math> <math>|\vec{AC}| = \sqrt{AC_x^2 + AC_y^2} = \sqrt{(2.5)^2 + (161.8)^2} = \sqrt{6.25 + 26178.44} = \sqrt{26184.69} \approx 161.78</math>.|2}} Le norme (lunghezze) dei due vettori sono calcolate con la formula della lunghezza del vettore {{Tooltip|'''Calcolo dell'angolo'''|<math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math> Sostituendo i valori: <math>\cos(\theta) = \frac{4377.55}{93.96 \cdot 161.78} = \frac{4377.55}{15193.68} \approx 0.288</math>|2}} Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: Infine, l'angolo <math>\theta</math> è calcolato tramite la funzione arcoseno: <math>\theta = \arccos(0.288) \approx 73.32^\circ</math> '''Motivo dell'analisi''' L'obiettivo dell'analisi è determinare l'angolo tra due movimenti all'interno di un sistema articolare, in particolare nell'area di studio della cinematica masticatoria.}} ed il risultato lineare ed angolare è di <math>9.1 </math> mm rispetto al punto <math>7^* </math> ed il coseno dell'angolo è stato calcolato come <math>0.288 </math> , con l'angolo risultante approssimativamente pari a <math> | Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti: {{Tooltip|'''Prodotto scalare'''|Sostituendo i valori calcolati: <math>\vec{AB} \cdot \vec{AC} = (-89.5) \cdot (2.5) + (28.5) \cdot (161.8) = -223.75 + 4601.3 = 4377.55</math> |2}} Il **prodotto scalare** tra due vettori <math>\vec{AB}</math> e <math>\vec{AC }</math> è dato dalla formula: <math>\vec{AB} \cdot \vec{AC} = AB_x \cdot AC_x + AB_y \cdot AC_y</math>{{Tooltip|'''Calcolo delle norme'''| <math>|\vec{AB}| = \sqrt{AB_x^2 + AB_y^2} = \sqrt{(-89.5)^2 + (28.5)^2} = \sqrt{8010.25 + 812.25} = \sqrt{8822.5} \approx 93.96</math> <math>|\vec{AC}| = \sqrt{AC_x^2 + AC_y^2} = \sqrt{(2.5)^2 + (161.8)^2} = \sqrt{6.25 + 26178.44} = \sqrt{26184.69} \approx 161.78</math>.|2}} Le norme (lunghezze) dei due vettori sono calcolate con la formula della lunghezza del vettore {{Tooltip|'''Calcolo dell'angolo'''|<math>\cos(\theta) = \frac{\vec{AB} \cdot \vec{AC}}{|\vec{AB}| \cdot |\vec{AC}|}</math> Sostituendo i valori: <math>\cos(\theta) = \frac{4377.55}{93.96 \cdot 161.78} = \frac{4377.55}{15193.68} \approx 0.288</math>|2}} Ora possiamo usare la formula per il coseno dell'angolo tra i due vettori: Infine, l'angolo <math>\theta</math> è calcolato tramite la funzione arcoseno: <math>\theta = \arccos(0.288) \approx 73.32^\circ</math> '''Motivo dell'analisi''' L'obiettivo dell'analisi è determinare l'angolo tra due movimenti all'interno di un sistema articolare, in particolare nell'area di studio della cinematica masticatoria.}} ed il risultato lineare ed angolare è di <math>9.1 </math> mm rispetto al punto <math>7^* </math> ed il coseno dell'angolo è stato calcolato come <math>0.288 </math> , con l'angolo risultante approssimativamente pari a <math> | ||
73.32^\circ</math>. | 73.32^\circ</math>. | ||
== Conclusione della cinematica del molare laterotrusivo == | |||
L'analisi del movimento articolare del molare ipsilaterale al condilo laterotrusivo fornisce una comprensione dettagliata delle dinamiche masticatorie laterali, con particolare attenzione agli spostamenti lineari e angolari che avvengono durante il movimento laterotrusivo. Utilizzando la trigonometria vettoriale e il prodotto scalare, è stato possibile calcolare la distanza e l'angolo tra i punti di riferimento selezionati, ottenendo risultati significativi che descrivono la traiettoria e l'orientamento del molare in relazione alla struttura condilare. | |||
In termini di spostamento lineare, il molare laterotrusivo mostra una distanza di circa 9.1 mm rispetto al punto di massima intercuspidazione, rappresentato dal punto <math>7^*</math>. Questo movimento retrattivo e laterale riflette le forze e i vincoli strutturali imposti dalla morfologia condilare e dall'interazione con il condilo mediotrusivo, che influenzano la traiettoria del molare durante la funzione masticatoria. | |||
Dal punto di vista angolare, il coseno dell'angolo calcolato tra i segmenti definiti è stato di 0.288, che corrisponde a un angolo di 73.32°. Questo valore angolare offre informazioni fondamentali sulla direzione del movimento laterale e sul grado di deviazione del molare rispetto all'asse laterale di riferimento. Un angolo di questa entità indica una significativa deviazione laterale, suggerendo un elevato grado di libertà del molare durante il movimento, condizionato dalla tensione muscolare e dalla geometria articolare. | |||
L'approccio matematico adottato permette non solo di quantificare lo spostamento, ma anche di inferire la qualità del movimento articolare, supportando così valutazioni cliniche che possono guidare sia diagnosi di anomalie masticatorie che interventi di riabilitazione mirati. In sintesi, i dati emersi da questa analisi costituiscono un'importante base di riferimento per comprendere i meccanismi biomeccanici sottostanti ai movimenti mandibolari e per migliorare la precisione dei trattamenti nell'ambito della riabilitazione masticatoria e della gestione dei disturbi temporomandibolari. |
edits