Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,784
edits
Line 2: | Line 2: | ||
[[File:Meningioma 3 by Gianni Frisardi.jpeg|link=link=Special:FilePath/Meningioma_3_by_Gianni_Frisardi.jpg|alt=|left|frameless]] | [[File:Meningioma 3 by Gianni Frisardi.jpeg|link=link=Special:FilePath/Meningioma_3_by_Gianni_Frisardi.jpg|alt=|left|frameless]] | ||
This | This analysis explores the complex relationships between dental malocclusion, postural disorders, and trigeminal neurophysiopathology through the case of 'Balancer,' a patient with a decade-long struggle with a skull base meningioma. This case highlights the challenges and misdiagnoses that can arise when traditional dental perspectives overlook deeper neurophysiological issues, advocating for a more nuanced approach to diagnosis and treatment. The chapter begins by addressing the limitations of axiomatic assumptions in medical diagnoses, particularly when dealing with the interplay between dental health and neurological conditions. 'Balancer's' symptoms were initially interpreted through a dental lens but later revealed significant neurological pathology. | ||
The narrative explores how 'Balancer's' meningioma affected both sensory and motor fibers of the trigeminal nerve, leading to severe symptoms misinterpreted as dental issues. This section underscores the importance of integrating neurophysiological data into dental diagnoses, especially for atypical or severe symptoms. | |||
The | |||
The summary evaluates the diagnostic process, emphasizing the role of electrophysiological tests such as bRoot-MEPs and jaw jerk reflex assessments. These tests provided a clearer picture of the nerve damage than traditional dental evaluations and highlighted the need for medical imaging to confirm the meningioma's presence and impact. | |||
The | |||
MRI results confirmed the meningioma's severe implications, showing brainstem displacement and raising questions about the tumor's early development stages. The section considers whether earlier detection through targeted electrophysiological testing could have changed the treatment course. | |||
'Balancer's' case illustrates how symptoms like 'chewing difficulty' can be misleading. The narrative advocates for an integrated diagnostic approach that combines dental and neurological expertise to avoid oversimplified conclusions and inadequate treatments. | |||
The use of a Cognitive Neural Network (CNN) in diagnosing 'Balancer's' condition is discussed, demonstrating how advanced data analysis can differentiate between dental malocclusions and serious neurological conditions. This section outlines the CNN's steps to refine the diagnosis and understand the underlying causes of symptoms. | |||
The chapter concludes by discussing the broader clinical implications for dentistry and neurology. It calls for greater awareness of neurological conditions manifesting as dental symptoms and recommends interdisciplinary approaches in medical training and practice to prevent diagnostic errors. | |||
The | |||
{{ArtBy| | |||
| autore = Gianni Frisardi | | autore = Gianni Frisardi | ||
| autore2 = Giorgio Cruccu | | autore2 = Giorgio Cruccu | ||
Line 79: | Line 49: | ||
The 'CNN' loop closure analy of course is based on the terminal article which basically describe five patients with cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) with chronic cough and lower limb muscle stretch reflexes preserve yourself.<ref name=":0">Jon Infante, Antonio García, Karla M Serrano-Cárdenas, Rocío González-Aguado, José Gazulla, Enrique M de Lucas, José Berciano. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) with chronic cough and preserved muscle stretch reflexes: evidence for selective sparing of afferent Ia fibres.J Neurol . 2018 Jun;265(6):1454-1462. doi: 10.1007/s00415-018-8872-1.Epub 2018 Apr 25. | The 'CNN' loop closure analy of course is based on the terminal article which basically describe five patients with cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) with chronic cough and lower limb muscle stretch reflexes preserve yourself.<ref name=":0">Jon Infante, Antonio García, Karla M Serrano-Cárdenas, Rocío González-Aguado, José Gazulla, Enrique M de Lucas, José Berciano. Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) with chronic cough and preserved muscle stretch reflexes: evidence for selective sparing of afferent Ia fibres.J Neurol . 2018 Jun;265(6):1454-1462. doi: 10.1007/s00415-018-8872-1.Epub 2018 Apr 25. | ||
</ref> In particular, somatosensory evoked potentials were absent or severely attenuated. Biceps and hamstring T-reflex recordings were normal, while the masseter reflex was absent or attenuated.<blockquote>[[File:Meningioma 2 by Gianni Frisardi.jpeg|link=link=Special:FilePath/Meningioma_2_by_Gianni_Frisardi.jpg|alt=|thumb|'''Figure 1:''' Neurological statement highlighting a severe right jaw jerk latency and amplitude abnormality]]The first observation to be made is that the patients were suffering from chronic spasmodic cough and the second observation was the preservation of the tendon reflexes of the lower limbs. In our patient 'Balancer', on the other hand, there was a total absence of the mandibular tendon reflex<ref>The history of examination of reflexes. Boes CJ.J Neurol. 2014 Dec;261(12):2264-74. doi: 10.1007/s00415-014-7326-7. Epub 2014 Apr 3.PMID: 24695995 </ref> (<math>\gamma_1</math>) so that the neurological damage was very evident at the trigeminal midbrain level. (Figure 1) The multifunctional contribution of the midbrain synaptic circuitry by the proprioceptive nerve endings ( <math>1a</math> e <math>\gamma</math>) are of primary importance both for posture and for cervico-oculomotor reflexes. A very interesting article by Yongmei Chen et al.<ref>Chen Y, Gong X, Ibrahim SIA, Liang H, Zhang J.. Convergent innervations of mesencephalic trigeminal and vestibular nuclei neurons onto oculomotor and pre-oculomotor neurons-Tract tracing and triple labeling in rats. PLoS One. 2022 Nov 28;17(11):e0278205. doi: 10.1371/journal.pone.0278205. eCollection 2022.PMID: 36441755 </ref> showed, through markers, how neurons afferent to the trigeminal mesencephalic nucleus (Vme) from the jaw muscles project to the oculomotor nuclei (III/IV) and their premotor neurons in the interstitial nucleus of Cajal (INC), a well-known pre-oculomotor center that vertically manipulates torsional eye movements. | </ref> In particular, somatosensory evoked potentials were absent or severely attenuated. Biceps and hamstring T-reflex recordings were normal, while the masseter reflex was absent or attenuated.<blockquote>[[File:Meningioma 2 by Gianni Frisardi.jpeg|link=link=Special:FilePath/Meningioma_2_by_Gianni_Frisardi.jpg|alt=|thumb|'''Figure 1:''' Neurological statement highlighting a severe right jaw jerk latency and amplitude abnormality]]The first observation to be made is that the patients were suffering from chronic spasmodic cough and the second observation was the preservation of the tendon reflexes of the lower limbs. In our patient 'Balancer', on the other hand, there was a total absence of the mandibular tendon reflex<ref>The history of examination of reflexes. Boes CJ.J Neurol. 2014 Dec;261(12):2264-74. doi: 10.1007/s00415-014-7326-7. Epub 2014 Apr 3.PMID: 24695995 </ref> (<math>\gamma_1</math>) so that the neurological damage was very evident at the trigeminal midbrain level. (Figure 1) The multifunctional contribution of the midbrain synaptic circuitry by the proprioceptive nerve endings ( <math>1a</math> e <math>\gamma</math>) are of primary importance both for posture and for cervico-oculomotor reflexes. A very interesting article by Yongmei Chen et al.<ref>Chen Y, Gong X, Ibrahim SIA, Liang H, Zhang J.. [https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36441755/ Convergent innervations of mesencephalic trigeminal and vestibular nuclei neurons onto oculomotor and pre-oculomotor neurons-Tract tracing and triple labeling in rats.] PLoS One. 2022 Nov 28;17(11):e0278205. doi: 10.1371/journal.pone.0278205. eCollection 2022.PMID: 36441755 </ref> showed, through markers, how neurons afferent to the trigeminal mesencephalic nucleus (Vme) from the jaw muscles project to the oculomotor nuclei (III/IV) and their premotor neurons in the interstitial nucleus of Cajal (INC), a well-known pre-oculomotor center that vertically manipulates torsional eye movements. | ||
The conceptual conclusion of the authors was that the Vme proprioceptive neurons of the masticatory projecting muscles at III/IV and INC would detect spindle activity to spatial changes of the jaw conditioned by the force of gravity and/or by the connection between the mandible during rotation of the head. Thus, the convergent innervation of Vme and MVN neurons on the oculomotor and pre-oculomotor nuclei would be a neuroanatomical substrate for the interaction of masticatory proprioception with vestibulo-ocular signals on the oculomotor system during vertical-torsional VOR. The contribution of this article obviously allows us to consider a correlation between the trigeminal system, posture and gait, therefore, the abnormal asymmetry of the jaw jerk could be related to a postural disorder of our patient 'Balancer' | The conceptual conclusion of the authors was that the Vme proprioceptive neurons of the masticatory projecting muscles at III/IV and INC would detect spindle activity to spatial changes of the jaw conditioned by the force of gravity and/or by the connection between the mandible during rotation of the head. Thus, the convergent innervation of Vme and MVN neurons on the oculomotor and pre-oculomotor nuclei would be a neuroanatomical substrate for the interaction of masticatory proprioception with vestibulo-ocular signals on the oculomotor system during vertical-torsional VOR. The contribution of this article obviously allows us to consider a correlation between the trigeminal system, posture and gait, therefore, the abnormal asymmetry of the jaw jerk could be related to a postural disorder of our patient 'Balancer' |
edits