Difference between revisions of "3° Clinical case: Meningioma"

no edit summary
Line 3: Line 3:
== Abstract ==
== Abstract ==
[[File:Meningioma 4 by Gianni Frisardi.jpeg|left|300x300px]]
[[File:Meningioma 4 by Gianni Frisardi.jpeg|left|300x300px]]
This comprehensive summary delves into the innovative diagnostic approaches discussed in the Masticationpedia, particularly emphasizing the shift from traditional deterministic models to a quantum-like approach in understanding and diagnosing neuromotor responses related to occlusal and postural disorders. The quantum-like approach accepts the probabilistic uncertainty of medical diagnoses, recognizing the complex interplay between various biophysical effects and neuromotor responses.
This summary examines the shift from traditional deterministic diagnostic models to a quantum-like approach in understanding neuromotor responses related to occlusal and postural disorders, as discussed in the Masticationpedia. This approach acknowledges the probabilistic nature of medical diagnoses, emphasizing the complex interactions between biophysical effects and neuromotor responses.


The summary introduces the main themes of the Masticationpedia, focusing on the limitations of traditional deterministic approaches in medical diagnostics. It highlights the necessity of considering a broader, more probabilistic approach to understanding patient symptoms and conditions, especially in relation to occlusal and postural disorders.
Highlighting the limitations of deterministic models, the narrative advocates for a probabilistic perspective that better captures the nuances of patient symptoms in cases of occlusal and postural disorders. The text illustrates this with the case of "Balancer," a patient with postural disturbances following prosthetic rehabilitation, demonstrating how traditional diagnostic methods might lead to oversimplified treatments or misdiagnoses.


The narrative explores the transition from classical deterministic models to a quantum-like approach in medical diagnostics. This approach does not attempt to limit uncertainty through traditional statistical models but instead embraces the probabilistic nature of diagnosis. This is particularly relevant in cases where neuromotor responses are influenced by complex and often indeterminate biophysical effects.
Furthermore, the discussion critiques conventional tools like stabilization splints and explores the Centric Relationship concept, advocating for a dynamic, patient-specific approach in dental diagnostics that considers the broader neuromuscular system. It calls for a more integrative, patient-centered approach in neuromuscular dentistry, emphasizing the need for diagnostic innovation that accommodates the inherent complexities of treating neuromuscular and postural disorders. This narrative serves as a practical and theoretical guide for clinicians seeking to adopt more precise and holistic approaches in patient care.
 
The summary discusses the application of these concepts through clinical cases, illustrating how traditional methods might lead to misdiagnosis or oversimplified treatment plans. It uses the example of a patient, referred to as "Balancer," who presents with symptoms of postural and gait disturbances following prosthetic rehabilitation. This case serves as a practical example of how quantum-like diagnostic approaches can be applied to real-world medical scenarios.
 
In exploring the diagnosis and treatment of "Balancer," the narrative emphasizes the interconnectedness of neuromuscular functions and posture. It discusses how unilateral chewing and other masticatory imbalances can impact overall postural alignment and stability, challenging the clinician to look beyond simple mechanical corrections and consider the patient's entire neuromuscular system.
 
The summary outlines various diagnostic tools and techniques used to assess and treat occlusal and postural disorders, including the use of stabilization splints to achieve neuromuscular balance. It critically evaluates the effectiveness and limitations of these tools, encouraging a more nuanced approach to treatment that considers each patient's unique neuromuscular condition.
 
A significant portion of the discussion is dedicated to the concept of the Centric Relationship in dental diagnostics. The narrative questions the traditional views on this concept, suggesting that a more dynamic and patient-specific approach might yield better diagnostic and treatment outcomes. It also points out the discrepancies between manual methods used in orthognathic surgery and those derived from neuro-evoked responses, illustrating the complexities involved in defining a true "centric" position.
 
The summary concludes with reflections on the need for continued innovation in diagnostic methodologies in the field of neuromuscular dentistry. It calls for a shift towards more integrative, patient-centered approaches that recognize the inherent uncertainties and complexities of diagnosing and treating neuromuscular and postural disorders.
 
This summary not only provides insights into the theoretical underpinnings of advanced diagnostic approaches in neuromuscular dentistry but also illustrates their practical implications through detailed case studies. It serves as a valuable resource for clinicians seeking to adopt more holistic and precise approaches to patient care.<blockquote>
== Keywords ==
'''Quantum-like Diagnostic Approach''' - Refers to an innovative method in medical diagnostics that embraces the probabilistic nature of conditions rather than trying to limit uncertainty through traditional deterministic models. This approach is particularly relevant for complex cases involving neuromuscular and postural disorders.
 
'''Neuromotor Responses''' - Describes the body's motor responses to neural stimuli, which are crucial for understanding how occlusal and postural disorders affect overall bodily functions. This term is key in discussions about the integration of dental and bodily health.
 
'''Occlusal Stability''' - Pertains to the alignment and even contact of teeth during closure, which is vital for balanced jaw function and overall posture. It's a central concept in diagnosing and treating disorders related to the jaw and teeth alignment.
 
'''Centric Relationship''' - A dental term that describes the position of the jaw where the teeth are in maximum contact, or the ideal relation of the lower jaw to the upper jaw. This concept is debated for its impact on overall posture and neuromuscular health.
 
'''Postural Disorders''' - Refers to conditions affecting the posture due to various causes, including neuromuscular imbalances or skeletal misalignments. It's crucial for understanding how bodily posture can be influenced by dental conditions.
 
'''Prosthetic Rehabilitation''' - Involves the use of dental prosthetics to restore function and aesthetics, particularly relevant in the discussion about the patient "Balancer" who experienced postural changes following such rehabilitation.
 
'''Neuromuscular Balance''' - The equilibrium in muscle function across different body parts, crucial for maintaining posture and proper musculoskeletal function. This term is often discussed in relation to the effectiveness of dental splints and other treatments.
 
'''Masticationpedia''' - The platform or collection being referenced which provides comprehensive insights into advanced diagnostic and treatment approaches in the field of neuromuscular and dental health.
 
'''Stabilization Splints''' - Devices used in dental treatment to stabilize jaw position, often used to treat Temporomandibular Disorders (TMDs) and ensure neuromuscular balance.
 
'''Diagnostic Tools and Techniques''' - Refers to the methods and devices used to assess, diagnose, and treat conditions within the neuromuscular and dental fields, highlighting the importance of choosing the right tools for effective patient care.</blockquote>


{{ArtBy|
{{ArtBy|
Line 45: Line 13:
| autore2 = Flavio Frisardi
| autore2 = Flavio Frisardi
}}
}}
===Introduction===
==Introduction==






As now implicit, this clinical case too, which from now on we will call with a fancy name <u>Balancer</u>' due to its related symptoms of postural and gait disturbance after being prosthetically rehabilitated, will follow the presentation model of the previous clinical cases. The introduction will present topics relating to the diagnostic model in question on which we will make the first conceptual reflections highlighted by our dear and thoughtful Linus. A recent article by Minervini et al.<ref>Giuseppe Minervini, Rocco Franco, Maria Maddalena Marrapodi, Salvatore Crimi, Almir Badnjević, Gabriele Cervino, Alberto Bianchi, and  Marco Cicciù. Correlation between Temporomandibular Disorders (TMD) and Posture Evaluated trough the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD): A Systematic Review with Meta-Analysis. J Clin Med. 2023 Apr; 12(7): 2652. Published online 2023 Apr 2. doi: 10.3390/jcm12072652.PMCID: PMC10095000.PMID: 37048735
As now implicit, this clinical case too, which from now on we will call with a fancy name <u>Balancer</u>' due to its related symptoms of postural and gait disturbance after being prosthetically rehabilitated, will follow the presentation model of the previous clinical cases. The introduction will present topics relating to the diagnostic model in question on which we will make the first conceptual reflections highlighted by our dear and thoughtful Linus. A recent article by Minervini et al.<ref>Giuseppe Minervini, Rocco Franco, Maria Maddalena Marrapodi, Salvatore Crimi, Almir Badnjević, Gabriele Cervino, Alberto Bianchi, and  Marco Cicciù. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095000/ Correlation between Temporomandibular Disorders (TMD) and Posture Evaluated trough the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD): A Systematic Review with Meta-Analysis]. J Clin Med. 2023 Apr; 12(7): 2652. Published online 2023 Apr 2. doi: 10.3390/jcm12072652.PMCID: PMC10095000.PMID: 37048735
</ref> asserts the following: TMD has ligament and muscle connections with the cervical area, therefore these connections have led to the hypothesis that posture problems may influence the development of TMD, <ref>An J.-S., Jeon D.-M., Jung W.-S., Yang I.-H., Lim W.H., Ahn S.-J. Influence of temporomandibular joint disc displacement on craniocervical posture and hyoid bone position. Am. J. Orthod. Dentofac. Orthop. 2015;147:72–79. doi: 10.1016/j.ajodo.2014.09.015.</ref><ref>Lee W.Y., Okeson J.P., Lindroth J. The relationship between forward head posture and temporomandibular disorders. J. Orofac. Pain. 1995;9 </ref><ref>Minervini G., Mariani P., Fiorillo L., Cervino G., Cicciù M., Laino L. Prevalence of temporomandibular disorders in people with multiple sclerosis: A systematic review and meta-analysis. CRANIO® 2022:1–9. doi: 10.1080/08869634.2022.2137129.</ref><ref>Minervini G.D., Del Mondo D.D., Russo D.D., Cervino G.D., D’Amico C.D., Fiorillo L.D. Stem Cells in Temporomandibular Joint Engineering: State of Art and Future Persectives. J. Craniofacial Surg. 2022;33:2181–2187. doi: 10.1097/SCS.0000000000008771.</ref><ref>Crescente G., Minervini G., Spagnuolo C., Moccia S. Cannabis Bioactive Compound-Based Formulations: New Per-spectives for the Management of Orofacial Pain. Molecules. 2022;28:106. doi: 10.3390/molecules28010106.</ref> therefore masticatory cycles should be balanced as unilateral chewing could alter the postural balance of the body. Stabilization splints can bring about neuromuscular balance, removing posterior interference and providing a stable occlusal relationship and an optimization of the centric relationship. The relationship between craniometric posture and TMD has been studied, however, despite the huge number of studies, clinicians and academics still remain unconvinced.<ref>Abe S., Kawano F., Matsuka Y., Masuda T., Okawa T., Tanaka E. Relationship between Oral Parafunctional and Postural Habits and the Symptoms of Temporomandibular Disorders: A Survey-Based Cross-Sectional Cohort Study Using Propensity Score Matching Analysis. J. Clin. Med. 2022;11:6396. doi: 10.3390/jcm11216396.</ref><blockquote>'''''[[File:Question 2.jpg|50x50px|link=https://wiki.masticationpedia.org/index.php/File:Question_2.jpg|left]]'''''
</ref> asserts the following: TMD has ligament and muscle connections with the cervical area, therefore these connections have led to the hypothesis that posture problems may influence the development of TMD, <ref>An J.-S., Jeon D.-M., Jung W.-S., Yang I.-H., Lim W.H., Ahn S.-J. Influence of temporomandibular joint disc displacement on craniocervical posture and hyoid bone position. Am. J. Orthod. Dentofac. Orthop. 2015;147:72–79. doi: 10.1016/j.ajodo.2014.09.015.</ref><ref>Lee W.Y., Okeson J.P., Lindroth J. The relationship between forward head posture and temporomandibular disorders. J. Orofac. Pain. 1995;9 </ref><ref>Minervini G., Mariani P., Fiorillo L., Cervino G., Cicciù M., Laino L. Prevalence of temporomandibular disorders in people with multiple sclerosis: A systematic review and meta-analysis. CRANIO® 2022:1–9. doi: 10.1080/08869634.2022.2137129.</ref><ref>Minervini G.D., Del Mondo D.D., Russo D.D., Cervino G.D., D’Amico C.D., Fiorillo L.D. Stem Cells in Temporomandibular Joint Engineering: State of Art and Future Persectives. J. Craniofacial Surg. 2022;33:2181–2187. doi: 10.1097/SCS.0000000000008771.</ref><ref>Crescente G., Minervini G., Spagnuolo C., Moccia S. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822121/ Cannabis Bioactive Compound-Based Formulations: New Per-spectives for the Management of Orofacial Pain]. Molecules. 2022;28:106. doi: 10.3390/molecules28010106.</ref> therefore masticatory cycles should be balanced as unilateral chewing could alter the postural balance of the body. Stabilization splints can bring about neuromuscular balance, removing posterior interference and providing a stable occlusal relationship and an optimization of the centric relationship. The relationship between craniometric posture and TMD has been studied, however, despite the huge number of studies, clinicians and academics still remain unconvinced.<ref>Abe S., Kawano F., Matsuka Y., Masuda T., Okawa T., Tanaka E. Relationship between Oral Parafunctional and Postural Habits and the Symptoms of Temporomandibular Disorders: A Survey-Based Cross-Sectional Cohort Study Using Propensity Score Matching Analysis. J. Clin. Med. 2022;11:6396. doi: 10.3390/jcm11216396.</ref>
'''''<nowiki/>'<nowiki/>''Centric Relationship and Posture'''


=== '''''[[File:Question 2.jpg|50x50px|link=https://wiki.masticationpedia.org/index.php/File:Question_2.jpg|left]]''Centric Relationship and Posture''' ===
<blockquote>'''''<nowiki/>'''''
The conclusion is mandatory: 'however, despite the huge number of studies, clinical and academic remain unconvincing.' This always turns out to be a diplomatic way to avoid trouble but if we carefully read the salient points of this extract it seems that everything derives from a sort of balance due to occlusal stability and an exact Mandibular Centric Relationship. But the question that arises is:
The conclusion is mandatory: 'however, despite the huge number of studies, clinical and academic remain unconvincing.' This always turns out to be a diplomatic way to avoid trouble but if we carefully read the salient points of this extract it seems that everything derives from a sort of balance due to occlusal stability and an exact Mandibular Centric Relationship. But the question that arises is:


Line 62: Line 31:


Another recent study Inchingolo et al.<ref>Alessio Danilo Inchingolo, Carmela Pezzolla, Assunta Patano, Sabino Ceci, Anna Maria Ciocia, Grazia Marinelli, Giuseppina Malcangi, Valentina Montenegro, Filippo Cardarelli, Fabio Piras, Irene Ferrara, Biagio Rapone, Ioana Roxana Bordea, Dario Di Stasio, Antonio Scarano, Felice Lorusso, Andrea Palermo, Kenan Ferati, Angelo Michele Inchingolo, Francesco Inchingolo, Daniela Di Venere, Gianna Dipalma . Experimental Analysis of the Use of Cranial Electromyography in Athletes and Clinical Implications. Int J Environ Res Public Health. 2022 Jun 29;19(13):7975. doi: 10.3390/ijerph19137975.
Another recent study Inchingolo et al.<ref>Alessio Danilo Inchingolo, Carmela Pezzolla, Assunta Patano, Sabino Ceci, Anna Maria Ciocia, Grazia Marinelli, Giuseppina Malcangi, Valentina Montenegro, Filippo Cardarelli, Fabio Piras, Irene Ferrara, Biagio Rapone, Ioana Roxana Bordea, Dario Di Stasio, Antonio Scarano, Felice Lorusso, Andrea Palermo, Kenan Ferati, Angelo Michele Inchingolo, Francesco Inchingolo, Daniela Di Venere, Gianna Dipalma . Experimental Analysis of the Use of Cranial Electromyography in Athletes and Clinical Implications. Int J Environ Res Public Health. 2022 Jun 29;19(13):7975. doi: 10.3390/ijerph19137975.
</ref> asserts the following: the cranial surface electromyography allows the evaluation of the occlusal state and the quantification of the neuromuscular postural balance, thus understanding the dental occlusion from a functional point of view. It therefore represents a diagnostic revolution because it allows you to see what until now was only perceptible by palpation, and therefore not quantifiable.<ref>Falla D., Dall’Alba P., Rainoldi A., Merletti R., Jull G. Repeatability of Surface EMG Variables in the Sternocleidomastoid and Anterior Scalene Muscles. Eur. J. Appl. Physiol. 2002;87:542–549. doi: 10.1007/s00421-002-0661-x</ref> A meta-analysis on the use of sEMG to evaluate the relationships between masticatory muscles and postural muscles found that the correlation between the masticatory system and the muscle activity of other parts of the body can be detected experimentally using sEMG, but this correlation has little clinic relevance .<ref>Perinetti G., Türp J.C., Primožič J., Di Lenarda R., Contardo L. Associations between the Masticatory System and Muscle Activity of Other Body Districts. A Meta-Analysis of Surface Electromyography Studies. J. Electromyogr. Kinesiol. 2011;21:877–884. doi: 10.1016/j.jelekin.2011.05.014.</ref> However, Julià-Sánchez et al. found that dental occlusion affects the biomechanical and viscoelastic properties of masticatory and postural muscles using the MyotonPRO® system.<ref>Julià-Sánchez S., Álvarez-Herms J., Cirer-Sastre R., Corbi F., Burtscher M. The Influence of Dental Occlusion on Dynamic Balance and Muscular Tone. Front. Physiol. 2020;10:1626. doi: 10.3389/fphys.2019.01626</ref> The influence of the occlusal state on stability was also demonstrated in an article by Heit et al. who found a significant increase in balance at rest rather than at maximal intercuspidation.<ref>Heit T., Derkson C., Bierkos J., Saqqur M. The Effect of the Physiological Rest Position of the Mandible on Cerebral Blood Flow and Physical Balance: An Observational Study. Cranio. 2015;33:195–205. doi: 10.1179/0886963414Z.00000000063.</ref> These results are consistent with previous studies that used sEMG to measure both the muscle balance of the masticatory muscles and its influence on the activity of some postural muscles. A substantial reduction in resting postural muscle activity (sternocleidomastoid, erector spinae, and soleus) was found in participants with dental malocclusions after balancing with a bite.<ref>Bergamini M., Pierleoni F., Gizdulich A., Bergamini C. Dental Occlusion and Body Posture: A Surface EMG Study. Cranio. 2008;26:25–32. doi: 10.1179/crn.2008.041.</ref><blockquote>[[File:Question 2.jpg|50x50px|link=https://wiki.masticationpedia.org/index.php/File:Question_2.jpg|left]]'''Simmetria:''' When we speak of neuromotor balance in reference to electromyographic procedures, terms such as synchronicity and symmetry are implicitly evoked. Side-to-side symmetry of EMG motor unit discharges is a complex procedure to record and interpret. Many factors come into play and not only the level of muscle contraction but also the type of electrode and electromyographic device used. If the concept of symmetry is focused referring to interferential EMG pattern then the situation is further complicated by the spatio-temporal summation of the motor units which discharge asynchronously and at variable frequency. This can lead to collisions and cancellations of the recordable potential on the skin. The only way to be able to extrapolate a significant data is the Fourier analysis<ref>Ishii T, Narita N, Endo H.Evaluation of jaw and neck muscle activities while chewing using EMG-EMGtransfer function and EMG-EMG coherence function analyses in healthy subjects.. Physiol Behav. 2016 Jun 1;160:35-42. doi: 10.1016/j.physbeh.2016.03.023. Epub 2016 Apr 5.PMID: 27059322 </ref> and the Wavelet model<ref>Sharma T, Veer K. EMG classification using wavelet functions to determine muscle contraction.. J Med Eng Technol. 2016;40(3):99-105. doi: 10.3109/03091902.2016.1139202. Epub 2016 Mar 4.PMID: 26942656</ref> which, with the usual limitations of indeterminacy and measurement uncertainty already discussed in other chapters (K<sub>brain</sub>), tries to decompose the already complex signal due to its nature biochemistry and extrapolate information on biophysics. But the question that arises is:{{q2|Are we sure we are dealing with an 'Asymmetry'?|.... are we talking about a functional or organic asymmetry?}}Even with regard to this very delicate point of neuromuscular balance and symmetry, without going into specific topics referred to the reference chapters, we would like to highlight the inconsistencies encountered in statements of the 'symmetry/asymmetry' type between sides of the interferential EMG pattern. Figure 2a shows an interferential EMG trace (right and left masseter, upper and lower trace respectively) in which, obviously, an evident asymmetry can be recognized already at a first visual approach without further mathematical decompositions. In figure 2c, on the other hand, one can also appreciate, in other patient, a good symmetry of the sides. <gallery widths="240" heights="200" perrow="3" slideshow""="">
</ref> asserts the following: the cranial surface electromyography allows the evaluation of the occlusal state and the quantification of the neuromuscular postural balance, thus understanding the dental occlusion from a functional point of view. It therefore represents a diagnostic revolution because it allows you to see what until now was only perceptible by palpation, and therefore not quantifiable.<ref>Falla D., Dall’Alba P., Rainoldi A., Merletti R., Jull G. Repeatability of Surface EMG Variables in the Sternocleidomastoid and Anterior Scalene Muscles. Eur. J. Appl. Physiol. 2002;87:542–549. doi: 10.1007/s00421-002-0661-x</ref> A meta-analysis on the use of sEMG to evaluate the relationships between masticatory muscles and postural muscles found that the correlation between the masticatory system and the muscle activity of other parts of the body can be detected experimentally using sEMG, but this correlation has little clinic relevance .<ref>Perinetti G., Türp J.C., Primožič J., Di Lenarda R., Contardo L. Associations between the Masticatory System and Muscle Activity of Other Body Districts. A Meta-Analysis of Surface Electromyography Studies. J. Electromyogr. Kinesiol. 2011;21:877–884. doi: 10.1016/j.jelekin.2011.05.014.</ref> However, Julià-Sánchez et al. found that dental occlusion affects the biomechanical and viscoelastic properties of masticatory and postural muscles using the MyotonPRO® system.<ref>Julià-Sánchez S., Álvarez-Herms J., Cirer-Sastre R., Corbi F., Burtscher M. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005008/ The Influence of Dental Occlusion on Dynamic Balance and Muscular Tone.] Front. Physiol. 2020;10:1626. doi: 10.3389/fphys.2019.01626</ref> The influence of the occlusal state on stability was also demonstrated in an article by Heit et al. who found a significant increase in balance at rest rather than at maximal intercuspidation.<ref>Heit T., Derkson C., Bierkos J., Saqqur M. The Effect of the Physiological Rest Position of the Mandible on Cerebral Blood Flow and Physical Balance: An Observational Study. Cranio. 2015;33:195–205. doi: 10.1179/0886963414Z.00000000063.</ref> These results are consistent with previous studies that used sEMG to measure both the muscle balance of the masticatory muscles and its influence on the activity of some postural muscles. A substantial reduction in resting postural muscle activity (sternocleidomastoid, erector spinae, and soleus) was found in participants with dental malocclusions after balancing with a bite.<ref>Bergamini M., Pierleoni F., Gizdulich A., Bergamini C. Dental Occlusion and Body Posture: A Surface EMG Study. Cranio. 2008;26:25–32. doi: 10.1179/crn.2008.041.</ref><blockquote></blockquote>[[File:Question 2.jpg|50x50px|link=https://wiki.masticationpedia.org/index.php/File:Question_2.jpg|left]]
 
=== '''Simmetry''' ===
<blockquote>When we speak of neuromotor balance in reference to electromyographic procedures, terms such as synchronicity and symmetry are implicitly evoked. Side-to-side symmetry of EMG motor unit discharges is a complex procedure to record and interpret. Many factors come into play and not only the level of muscle contraction but also the type of electrode and electromyographic device used. If the concept of symmetry is focused referring to interferential EMG pattern then the situation is further complicated by the spatio-temporal summation of the motor units which discharge asynchronously and at variable frequency. This can lead to collisions and cancellations of the recordable potential on the skin. The only way to be able to extrapolate a significant data is the Fourier analysis<ref>Ishii T, Narita N, Endo H.[https://www.sciencedirect.com/science/article/pii/S003193841630110X?via%3Dihub Evaluation of jaw and neck muscle activities while chewing using EMG-EMGtransfer function and EMG-EMG coherence function analyses in healthy subjects.]. Physiol Behav. 2016 Jun 1;160:35-42. doi: 10.1016/j.physbeh.2016.03.023. Epub 2016 Apr 5.PMID: 27059322 </ref> and the Wavelet model<ref>Sharma T, Veer K. EMG classification using wavelet functions to determine muscle contraction.. J Med Eng Technol. 2016;40(3):99-105. doi: 10.3109/03091902.2016.1139202. Epub 2016 Mar 4.PMID: 26942656</ref> which, with the usual limitations of indeterminacy and measurement uncertainty already discussed in other chapters (K<sub>brain</sub>), tries to decompose the already complex signal due to its nature biochemistry and extrapolate information on biophysics. But the question that arises is:{{q2|Are we sure we are dealing with an 'Asymmetry'?|.... are we talking about a functional or organic asymmetry?}}Even with regard to this very delicate point of neuromuscular balance and symmetry, without going into specific topics referred to the reference chapters, we would like to highlight the inconsistencies encountered in statements of the 'symmetry/asymmetry' type between sides of the interferential EMG pattern. Figure 2a shows an interferential EMG trace (right and left masseter, upper and lower trace respectively) in which, obviously, an evident asymmetry can be recognized already at a first visual approach without further mathematical decompositions. In figure 2c, on the other hand, one can also appreciate, in other patient, a good symmetry of the sides. <gallery widths="240" heights="200" perrow="3" slideshow""="">
File:EMG2.jpg|'''Figura 2a:''' Functionally asymmetric interference EMG pattern
File:EMG2.jpg|'''Figura 2a:''' Functionally asymmetric interference EMG pattern
File:Bruxer MEP.jpeg|'''Figura 2b:'''Motor evoked potential of the trigeminal roots
File:Bruxer MEP.jpeg|'''Figura 2b:'''Motor evoked potential of the trigeminal roots
Line 70: Line 42:
Well, these two asymmetry/symmetry data (figure 2a and 2c) have no clinical significance because they are functional characteristics of the system which, as we anticipated, are unstable and modulated by other internal and external components of the system itself. The clinical and laboratory aspect would change drastically if the interferential EMG pattern content in Figure 2a and 2c were normalized to the content of the Motor Evoked Potential of the trigeminal roots (Figure 2b) - same electrode arrangement). In this way, given the perfect amplitude symmetry of the Root-MEPs, we can irrefutably state that the EMG tracing in figure 2a corresponds to a state of 'Asymmetry' while that of figure 2c to a state of 'Symmetry'. If the <sub>b</sub>Root-MEPs were resulted asymmetric we would have had to speak of organic and functional symmetry and not of asymmetry. We should have looked for the causes, perhaps of measurement errors or verifying the extent of the asymmetry of the motor evoked potentials, but the concept is that we cannot give value to a functional peripheral datum without knowing the organic datum. {{q2|Beware of using the term 'Asymmetry' too casually|We can say that by throwing a die we have <math>\frac{1}{36}</math>  of probability that a number from 1 to 6 comes out but we must be sure that the die has 6 sides and that the numbers are from 1 to 6}}</blockquote>We could go on and on but we prefer to deal with the clinical case of our patient '<u>Balancer</u>'
Well, these two asymmetry/symmetry data (figure 2a and 2c) have no clinical significance because they are functional characteristics of the system which, as we anticipated, are unstable and modulated by other internal and external components of the system itself. The clinical and laboratory aspect would change drastically if the interferential EMG pattern content in Figure 2a and 2c were normalized to the content of the Motor Evoked Potential of the trigeminal roots (Figure 2b) - same electrode arrangement). In this way, given the perfect amplitude symmetry of the Root-MEPs, we can irrefutably state that the EMG tracing in figure 2a corresponds to a state of 'Asymmetry' while that of figure 2c to a state of 'Symmetry'. If the <sub>b</sub>Root-MEPs were resulted asymmetric we would have had to speak of organic and functional symmetry and not of asymmetry. We should have looked for the causes, perhaps of measurement errors or verifying the extent of the asymmetry of the motor evoked potentials, but the concept is that we cannot give value to a functional peripheral datum without knowing the organic datum. {{q2|Beware of using the term 'Asymmetry' too casually|We can say that by throwing a die we have <math>\frac{1}{36}</math>  of probability that a number from 1 to 6 comes out but we must be sure that the die has 6 sides and that the numbers are from 1 to 6}}</blockquote>We could go on and on but we prefer to deal with the clinical case of our patient '<u>Balancer</u>'


====3rd Clinical Case====
==3rd Clinical Case==
 
As anticipated we will resume the same diagnostic language presented both for the patient Mary Poppins and for the 'Bruxer' patients so that it becomes an assimilable and practicable model, we will try to superimpose it on the present clinical case called 'Balancer'.<blockquote>The subject, a 60-year-old man undergoing prosthetic rehabilitation about 10 years earlier, had begun to report masticatory difficulties and specifically a sort of decrease in muscle strength on the right side and slowing down of the masticatory cycle. After an unquantified period of time, the patient also felt a difficulty in both static and dynamic balance. Reporting these disturbances to his dentist, he was proposed a makeover of the prosthetic rehabilitation. The clinical situation did not change, on the contrary the postulated disturbances increased leading the dentist to a new prosthetic rehabilitation this time following the postural methods through a synergism between pedanometric examinations and centric recordings. Having reached our observation, we immediately subjected the patient to our diagnostic process which is, as usual, represented in the form of 'Contexts'. </blockquote>
As anticipated we will resume the same diagnostic language presented both for the patient Mary Poppins and for the 'Bruxer' patients so that it becomes an assimilable and practicable model, we will try to superimpose it on the present clinical case called 'Balancer'.<blockquote>The subject, a 60-year-old man undergoing prosthetic rehabilitation about 10 years earlier, had begun to report masticatory difficulties and specifically a sort of decrease in muscle strength on the right side and slowing down of the masticatory cycle. After an unquantified period of time, the patient also felt a difficulty in both static and dynamic balance. Reporting these disturbances to his dentist, he was proposed a makeover of the prosthetic rehabilitation. The clinical situation did not change, on the contrary the postulated disturbances increased leading the dentist to a new prosthetic rehabilitation this time following the postural methods through a synergism between pedanometric examinations and centric recordings. Having reached our observation, we immediately subjected the patient to our diagnostic process which is, as usual, represented in the form of 'Contexts'. </blockquote>
====Meaning of contexts====
===Meaning of the dental contexts===
As already mentioned but it should be emphasized, in the dental field we will have the following sentences and statements to which we give a numerical value to facilitate the treatment, or <math>\delta_n=[0|1]</math> where <math>\delta_n=0</math> it indicates 'normal' and <math>\delta_n=1</math> anomaly and therefore a positive report:
As already mentioned but it should be emphasized, in the dental field we will have the following sentences and statements to which we give a numerical value to facilitate the treatment, or <math>\delta_n=[0|1]</math> where <math>\delta_n=0</math> it indicates 'normal' and <math>\delta_n=1</math> anomaly and therefore a positive report:


Line 89: Line 62:
</gallery></center>
</gallery></center>


 
=== Meaning of the neurophysiological  contexts ===
 
In the '''neurological context''' we will therefore have the following sentences and assertions to which we give a numerical value to facilitate the treatment and that is <math>\gamma_n=[0|1]</math> where <math>\gamma_n=0</math> it indicates 'normality' and <math>\gamma_n=1</math> 'abnormality and therefore positivity of the report:
In the '''neurological context''' we will therefore have the following sentences and assertions to which we give a numerical value to facilitate the treatment and that is <math>\gamma_n=[0|1]</math> where <math>\gamma_n=0</math> it indicates 'normality' and <math>\gamma_n=1</math> 'abnormality and therefore positivity of the report:


Line 108: Line 80:
</center>
</center>


====<math>\tau</math> Demarcator of coherence====
====<math>\tau</math> Demarcator of diagnostic coherence====
As we have already described several times in the previous chapters, the '<math>\tau</math>' is a representative clinical specific weight, complex to research and develop because it varies from discipline to discipline and for pathologies, indispensable in order not to collide logical statements <math>\Im_o</math> and <math>\Im_n</math> in diagnostic procedures and fundamental to initialize the decryption of machine language code. In essence, it allows you to confirm the coherence of one assertion <math>\Im\cup\{\delta_1,\delta_2.....\delta_n\}</math> against another <math>\Im\cup\{\gamma_1,\gamma_2.....\gamma_n\}</math> and vice versa, giving greater weight to the seriousness of the reports and to the choice of the appropriate context.  
As we have already described several times in the previous chapters, the '<math>\tau</math>' is a representative clinical specific weight, complex to research and develop because it varies from discipline to discipline and for pathologies, indispensable in order not to collide logical statements <math>\Im_o</math> and <math>\Im_n</math> in diagnostic procedures and fundamental to initialize the decryption of machine language code. In essence, it allows you to confirm the coherence of one assertion <math>\Im\cup\{\delta_1,\delta_2.....\delta_n\}</math> against another <math>\Im\cup\{\gamma_1,\gamma_2.....\gamma_n\}</math> and vice versa, giving greater weight to the seriousness of the reports and to the choice of the appropriate context.  


Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,073

edits