Difference between revisions of "Occlusion and Posture"

no edit summary
Line 3: Line 3:




[[File:VEMP.jpg|Figure 1: Vestibula Evoked Myogenic Potentials (see chapter '[[Complex Systems]]'|left|400x400px]]In this section of Masticationpedia we will deal with a much discussed topic in the field of prosthetic rehabilitation and in the diagnosis of Orofacial disorders including Temporomandibular dysfunctions. As we shall see, there is a line between proponents of the correlation between posture and the trigeminal system and those who refute the correlation. To confirm or deny this correlation, it would be enough to focus the attention on the VEMPs (Myogenic Vestibular Evoked Potentials) to understand the neuronal synergism but it would be necessary to pay equal attention to the synaptic modulations that occur in this phenomenon to understand how much we still know about the aforementioned trigeminal/vestibular correlation. Just think of the roll effect and evaluate the click-evoked cervical vestibular myogenic potentials (VEMPS) during the visual roll motion that elicited an illusory sensation of self-movement (i.e., vection). During vetion, there is an increase in cVEMP amplitude that is positively correlated with subjective reports of vection strength. The experimental conclusion is, therefore, that the simple subjective sensation of section is able to modulate the response of VEMPs and that this higher-level cortical phenomenon can also extend to short-lasting vestibulospinal responses. Therefore, regardless of who will be right over time, one must always be very careful in evaluating the symptoms and clinical signs reported by patients and not be influenced by more or less fashionable axioms which can generate even serious errors in the differential diagnosis such as in clinical case that we will present below.  
[[File:VEMP.jpg|Figure 1: Vestibula Evoked Myogenic Potentials (see chapter '[[Complex Systems]]'|left|400x400px]]This detailed summary explores the debated connection between posture, the trigeminal system, and prosthetic rehabilitation in the diagnosis of orofacial disorders, including Temporomandibular dysfunctions (TMDs). This complex relationship is examined through the lens of vestibular evoked myogenic potentials (VEMPs), which are diagnostic tools used to study the integration of sensory inputs from the vestibular system into motor responses affecting jaw muscles. The discussion also touches on broader implications in the fields of neurology and rehabilitation, offering insights into the intricate interactions within the human body's sensory and motor systems.  


{{ArtBy|autore=Gianni Frisardi}}
The chapter begins by addressing the ongoing debate regarding the correlation between dental occlusion, posture, and temporomandibular disorders. It points out the critical need for a careful evaluation of clinical symptoms without being swayed by prevailing medical doctrines that might lead to diagnostic errors.
=== Introduction ===
 
VEMPs are discussed as a pivotal diagnostic approach to understanding the trigeminal/vestibular correlation. The narrative explains how VEMPs, specifically the click-evoked cervical vestibular myogenic potentials (cVEMPs), are influenced by visual motions that create an illusory sensation of movement, known as vection. The increase in cVEMP amplitude during vection illustrates the neurological connection between sensory perceptions and motor responses, highlighting the body's complex response mechanisms.
 
The text delves into the controversies surrounding the relationship between dental occlusion and postural stability. It presents both supporting and opposing views within the scientific community, backed by numerous references and studies. Proponents argue that disturbances in the craniomandibular system can influence overall postural alignment through neuromotor pathways and myofascial connections. Critics, however, question the clinical relevance of these correlations, citing studies with inconclusive or conflicting results.
 
A significant portion of the discussion is devoted to the methodologies used in studying the occlusion-posture relationship. The challenges of accurately measuring and interpreting the complex interactions between dental malocclusions and body posture are examined. The summary critiques the limitations of current research, including small sample sizes and the lack of comprehensive, high-quality studies that integrate dynamic and static assessments of posture and dental occlusion.
 
The narrative prepares to introduce a specific clinical case that exemplifies the practical implications of these theories in medical practice. It sets the stage for a detailed examination of a patient with marked temporomandibular and postural anomalies, intending to apply and possibly validate or refute the discussed theories through real-world application.
 
In concluding, the summary underscores the necessity of maintaining an open, evidence-based approach when diagnosing and treating conditions that may involve the integration of dental, postural, and neurological factors. It calls for more rigorous and expansive research to better define the connections between the stomatognathic system and overall body health, suggesting that future studies should aim to clarify these complex relationships using advanced diagnostic tools and more representative sample sizes.
 
This comprehensive overview not only sheds light on the specific topic of VEMPs and their role in understanding craniofacial and postural interrelations but also reflects on the broader implications for clinical practices in neurology, orthodontics, and physical therapy.<blockquote>
== Keywords ==
'''Vestibular Evoked Myogenic Potentials (VEMPs)''' - Refers to the diagnostic tools used to study the interaction between the vestibular system and muscle responses, crucial for understanding sensory and motor integration in the context of occlusion and posture.
 
'''Temporomandibular Dysfunctions (TMDs)''' - Describes disorders related to the temporomandibular joint, which are central to discussions of occlusion and postural stability in the medical and dental fields.
 
'''Trigeminal System''' - Points to the nerve system involved in facial sensation and motor functions, which is discussed in relation to its connection with vestibular inputs and its implications for occlusion and posture.
 
'''Orofacial Disorders''' - Broad term covering disorders of the face and mouth, relevant here for the discussion of how these conditions intersect with posture and neurological functions.
 
'''Postural Stability''' - Concerns the body's ability to maintain a stable posture, a key topic in the debate over the impact of dental occlusion on overall body posture.
 
'''Dental Occlusion''' - Refers to the alignment of teeth and the way the upper and lower teeth come into contact, which is analyzed for its potential impact on bodily posture and neuromuscular function.
 
'''Neuromuscular Responses''' - Relates to the responses of the muscular system to neural stimuli, particularly in the context of how occlusion may affect these responses.
 
'''Cervical Vestibular Myogenic Potentials (cVEMPs)''' - A specific type of VEMP that helps illustrate the interaction between visual stimuli and vestibular responses, showing how sensory illusions like vection can influence muscular responses in the neck.
 
'''Prosthetic Rehabilitation''' - Refers to the use of prosthetics in the rehabilitation process, especially relevant in discussions of restoring function and alignment in patients with orofacial disorders.
 
'''Myofascial Connections''' - Pertains to the connective tissue that surrounds and supports muscles, discussed in the context of how these structures may link the masticatory system to broader postural dynamics.</blockquote>{{ArtBy|autore=Gianni Frisardi}}
===Introduction===




Line 14: Line 46:


Posture is understood as the position of the human body and its orientation in space which requires the analysis and integration of stimuli from three systems: vision, vestibular and proprioception.<ref>Guez G. The Posture. In: Kandel E., Schwartz J., editors. Principles of Neural Science. Elsevier; Amsterdam, The Netherlands: 1991. pp. 612–623.</ref><ref>Czaprowski D., Stoliński L., Tyrakowski M., Kozinoga M., Kotwicki T. Non-structural misalignments of body posture in the sagittal plane. Scoliosis Spinal Disord. 2018;13:6. doi: 10.1186/s13013-018-0151-5.</ref> Over the years, numerous observations have been made on the factors influencing postural stability. <ref>Iwanenko J., Gurfinkel V. Human postural control. Front. Neurosci. 2018;12:17. </ref><ref>Guerraz M., Bronstein A.M. Ocular versus extraocular control of posture and equilibrium. Neurophysiol. Clin. 2008;38:391–398. doi: 10.1016/j.neucli.2008.09.007.</ref><ref>Hamaoui A., Frianta Y., Le Bozec S. Does increased muscular tension along the torso impair postural equilibrium in a standing posture? Gait Posture. 2011;34:457–461. doi: 10.1016/j.gaitpost.2011.06.017.</ref><ref>Kolar P., Sulc J., Kyncl M., Sanda J., Neuwirth J., Bokarius A.V., Kriz J., Kobesova A. Stabilizing function of the diaphragm: Dynamic MRI and synchronized spirometric assessment. J. Appl. Physiol. 2010;109:1064–1071. doi: 10.1152/japplphysiol.01216.2009.</ref><ref>Szczygieł E., Fudacz N., Golec J., Golec E. The impact of the position of the head on the functioning of the human body: A systematic review. Int. J. Occup. Med. Environ. Health. 2020;33:559–568. doi: 10.13075/ijomeh.1896.01585.</ref> The role of the craniomandibular system is now being increasingly analyzed in relation to it. <ref>Tardieu C., Dumitrescu M., Giraudeau A., Blanc J.L., Cheynet F., Borel L. Dental occlusion and postural control in adults. Neurosci. Lett. 2009;450:221–224. doi: 10.1016/j.neulet.2008.12.005.</ref><ref>Munhoz W.C., Hsing W.T. Interrelations between orthostatic postural deviations and subjects’ age, sex, malocclusion, and specific signs and symptoms of functional pathologies of the temporomandibular system: A preliminary correlation and regression study. Cranio. 2014;32:175–186. doi: 10.1179/0886963414Z.00000000031.</ref><ref>Pérez-Belloso A.J., Coheña-Jiménez M., Cabrera-Domínguez M.E., Galan-González A.F., Domínguez-Reyes A., Pabón-Carrasco M. Influence of dental malocclusion on body posture and foot posture in children: A cross-sectional study. Healthcare. 2020;8:485. doi: 10.3390/healthcare8040485.</ref><ref>Amaricai E., Onofrei R.R., Suciu O., Marcauteanu C., Stoica E.T., Negruțiu M.L., David V.L., Sinescu C. Do different dental conditions influence the static plantar pressure and stabilometry in young adults? PLoS ONE. 2020;15:e0228816. doi: 10.1371/journal.pone.0228816.</ref> Many theories attempt to explain the association between the masticatory organ and posture, including myofascial chains, trigeminal nerve activation or deactivation, and subsequent interaction in the brainstem.<ref name=":0">Cabrera-Domínguez M.E., Domínguez-Reyes A., Pabón-Carrasco M., Pérez-Belloso A.J., Coheña-Jiménez M., Galán-González A.F. Dental malocclusion and its relation to the podal system. Front. Pediatr. 2021;9:654229. doi: 10.3389/fped.2021.654229.</ref><ref>Myers T.  Anatomy Trains: Myofasziale Leitbahnen (für Manual- und Bewegungstherapeuten) Elsevier Health Sciences; Berlin, Germany: 2015.</ref><ref>Pinganaud G., Bourcier F., Buisseret-Delmas C., Buisseret P. Primary trigeminal afferents to the vestibular nuclei in the rat: Existence of a collateral projection to the vestibulo-cerebellum. Neurosci. Lett. 1999;264:133–136. doi: 10.1016/S0304-3940(99)00179-2. [PubMed] [CrossRef] [Google Scholar] [Ref list]</ref> However, this is a controversial topic in the scientific community. There is both evidence to support that relationship<ref name=":1">Bracco P., Deregibus A., Piscetta R. Effects of different jaw relations on postural stability in human subjects. Neurosci. Lett. 2004;356:228–230. doi: 10.1016/j.neulet.2003.11.055.</ref><ref name=":2">Manfredini D., Castroflorio T., Perinetti G., Guarda-Nardini L. Dental occlusion, body posture and temporomandibular disorders: Where we are now and where we are heading for. J. Oral Rehabil. 2012;39:463–471. doi: 10.1111/j.1365-2842.2012.02291.x. </ref><ref name=":3">Sakaguchi K., Mehta N.R., Abdallah E.F., Forgione A.G., Hirayama H., Kawasaki T., Yokoyama A. Examination of the relationship between mandibular position and body posture. Cranio. 2007;25:237–249. doi: 10.1179/crn.2007.037. </ref><ref name=":4">Cuccia A., Caradonna C. The relationship between the stomatognathic system and body posture. Clinics. 2009;64:61–63. doi: 10.1590/S1807-59322009000100011.</ref><ref name=":5">Marchena-Rodríguez A., Moreno-Morales N., Ramírez-Parga E., Labajo-Manzanares M.T., Luque-Suárez A., Gijon-Nogueron G. Relationship between foot posture and dental malocclusions in children aged 6 to 9 years. A cross-sectional study. Medicine. 2018;97:e0701. doi: 10.1097/MD.0000000000010701</ref><ref name=":6">Iacob S.M., Chisnoiu A.M., Buduru S.D., Berar A., Fluerasu M.I., Iacob I., Objelean A., Studnicska W., Viman L.M. Plantar pressure variations induced by experimental malocclusion—A pilot case series study. Healthcare. 2021;9:599. doi: 10.3390/healthcare9050599.</ref> and to refute it.<ref name=":7">Michelotti A., Buonocore G., Farella M., Pellegrino G., Piergentili C., Altobelli S., Martina R. Postural stability and unilateral posterior crossbite: Is there a relationship? Neurosci. Lett. 2006;392:140–144. doi: 10.1016/j.neulet.2005.09.008.</ref><ref name=":8">Perinetti G., Contardo L., Silvestrini-Biavati A., Perdoni L., Castaldo A. Dental malocclusion and body posture in young subjects: A multiple regression study. Clinics. 2010;65:689–695. doi: 10.1590/S1807-59322010000700007.</ref><ref name=":9">Scharnweber B., Adjami F., Schuster G., Kopp S., Natrup J., Erbe C., Ohlendorf D. Influence of dental occlusion on postural control and plantar pressure distribution. Cranio. 2017;35:358–366. doi: 10.1080/08869634.2016.1244971.</ref><ref name=":10">Isaia B., Ravarotto M., Finotti P., Nogara M., Piran G., Gamberini J., Biz C., Masiero S., Frizziero A. Analysis of dental malocclusion and neuromotor control in young healthy subjects through new evaluation tools. J. Funct. Morphol. Kinesiol. 2019;4:5. doi: 10.3390/jfmk4010005.</ref>  
Posture is understood as the position of the human body and its orientation in space which requires the analysis and integration of stimuli from three systems: vision, vestibular and proprioception.<ref>Guez G. The Posture. In: Kandel E., Schwartz J., editors. Principles of Neural Science. Elsevier; Amsterdam, The Netherlands: 1991. pp. 612–623.</ref><ref>Czaprowski D., Stoliński L., Tyrakowski M., Kozinoga M., Kotwicki T. Non-structural misalignments of body posture in the sagittal plane. Scoliosis Spinal Disord. 2018;13:6. doi: 10.1186/s13013-018-0151-5.</ref> Over the years, numerous observations have been made on the factors influencing postural stability. <ref>Iwanenko J., Gurfinkel V. Human postural control. Front. Neurosci. 2018;12:17. </ref><ref>Guerraz M., Bronstein A.M. Ocular versus extraocular control of posture and equilibrium. Neurophysiol. Clin. 2008;38:391–398. doi: 10.1016/j.neucli.2008.09.007.</ref><ref>Hamaoui A., Frianta Y., Le Bozec S. Does increased muscular tension along the torso impair postural equilibrium in a standing posture? Gait Posture. 2011;34:457–461. doi: 10.1016/j.gaitpost.2011.06.017.</ref><ref>Kolar P., Sulc J., Kyncl M., Sanda J., Neuwirth J., Bokarius A.V., Kriz J., Kobesova A. Stabilizing function of the diaphragm: Dynamic MRI and synchronized spirometric assessment. J. Appl. Physiol. 2010;109:1064–1071. doi: 10.1152/japplphysiol.01216.2009.</ref><ref>Szczygieł E., Fudacz N., Golec J., Golec E. The impact of the position of the head on the functioning of the human body: A systematic review. Int. J. Occup. Med. Environ. Health. 2020;33:559–568. doi: 10.13075/ijomeh.1896.01585.</ref> The role of the craniomandibular system is now being increasingly analyzed in relation to it. <ref>Tardieu C., Dumitrescu M., Giraudeau A., Blanc J.L., Cheynet F., Borel L. Dental occlusion and postural control in adults. Neurosci. Lett. 2009;450:221–224. doi: 10.1016/j.neulet.2008.12.005.</ref><ref>Munhoz W.C., Hsing W.T. Interrelations between orthostatic postural deviations and subjects’ age, sex, malocclusion, and specific signs and symptoms of functional pathologies of the temporomandibular system: A preliminary correlation and regression study. Cranio. 2014;32:175–186. doi: 10.1179/0886963414Z.00000000031.</ref><ref>Pérez-Belloso A.J., Coheña-Jiménez M., Cabrera-Domínguez M.E., Galan-González A.F., Domínguez-Reyes A., Pabón-Carrasco M. Influence of dental malocclusion on body posture and foot posture in children: A cross-sectional study. Healthcare. 2020;8:485. doi: 10.3390/healthcare8040485.</ref><ref>Amaricai E., Onofrei R.R., Suciu O., Marcauteanu C., Stoica E.T., Negruțiu M.L., David V.L., Sinescu C. Do different dental conditions influence the static plantar pressure and stabilometry in young adults? PLoS ONE. 2020;15:e0228816. doi: 10.1371/journal.pone.0228816.</ref> Many theories attempt to explain the association between the masticatory organ and posture, including myofascial chains, trigeminal nerve activation or deactivation, and subsequent interaction in the brainstem.<ref name=":0">Cabrera-Domínguez M.E., Domínguez-Reyes A., Pabón-Carrasco M., Pérez-Belloso A.J., Coheña-Jiménez M., Galán-González A.F. Dental malocclusion and its relation to the podal system. Front. Pediatr. 2021;9:654229. doi: 10.3389/fped.2021.654229.</ref><ref>Myers T.  Anatomy Trains: Myofasziale Leitbahnen (für Manual- und Bewegungstherapeuten) Elsevier Health Sciences; Berlin, Germany: 2015.</ref><ref>Pinganaud G., Bourcier F., Buisseret-Delmas C., Buisseret P. Primary trigeminal afferents to the vestibular nuclei in the rat: Existence of a collateral projection to the vestibulo-cerebellum. Neurosci. Lett. 1999;264:133–136. doi: 10.1016/S0304-3940(99)00179-2. [PubMed] [CrossRef] [Google Scholar] [Ref list]</ref> However, this is a controversial topic in the scientific community. There is both evidence to support that relationship<ref name=":1">Bracco P., Deregibus A., Piscetta R. Effects of different jaw relations on postural stability in human subjects. Neurosci. Lett. 2004;356:228–230. doi: 10.1016/j.neulet.2003.11.055.</ref><ref name=":2">Manfredini D., Castroflorio T., Perinetti G., Guarda-Nardini L. Dental occlusion, body posture and temporomandibular disorders: Where we are now and where we are heading for. J. Oral Rehabil. 2012;39:463–471. doi: 10.1111/j.1365-2842.2012.02291.x. </ref><ref name=":3">Sakaguchi K., Mehta N.R., Abdallah E.F., Forgione A.G., Hirayama H., Kawasaki T., Yokoyama A. Examination of the relationship between mandibular position and body posture. Cranio. 2007;25:237–249. doi: 10.1179/crn.2007.037. </ref><ref name=":4">Cuccia A., Caradonna C. The relationship between the stomatognathic system and body posture. Clinics. 2009;64:61–63. doi: 10.1590/S1807-59322009000100011.</ref><ref name=":5">Marchena-Rodríguez A., Moreno-Morales N., Ramírez-Parga E., Labajo-Manzanares M.T., Luque-Suárez A., Gijon-Nogueron G. Relationship between foot posture and dental malocclusions in children aged 6 to 9 years. A cross-sectional study. Medicine. 2018;97:e0701. doi: 10.1097/MD.0000000000010701</ref><ref name=":6">Iacob S.M., Chisnoiu A.M., Buduru S.D., Berar A., Fluerasu M.I., Iacob I., Objelean A., Studnicska W., Viman L.M. Plantar pressure variations induced by experimental malocclusion—A pilot case series study. Healthcare. 2021;9:599. doi: 10.3390/healthcare9050599.</ref> and to refute it.<ref name=":7">Michelotti A., Buonocore G., Farella M., Pellegrino G., Piergentili C., Altobelli S., Martina R. Postural stability and unilateral posterior crossbite: Is there a relationship? Neurosci. Lett. 2006;392:140–144. doi: 10.1016/j.neulet.2005.09.008.</ref><ref name=":8">Perinetti G., Contardo L., Silvestrini-Biavati A., Perdoni L., Castaldo A. Dental malocclusion and body posture in young subjects: A multiple regression study. Clinics. 2010;65:689–695. doi: 10.1590/S1807-59322010000700007.</ref><ref name=":9">Scharnweber B., Adjami F., Schuster G., Kopp S., Natrup J., Erbe C., Ohlendorf D. Influence of dental occlusion on postural control and plantar pressure distribution. Cranio. 2017;35:358–366. doi: 10.1080/08869634.2016.1244971.</ref><ref name=":10">Isaia B., Ravarotto M., Finotti P., Nogara M., Piran G., Gamberini J., Biz C., Masiero S., Frizziero A. Analysis of dental malocclusion and neuromotor control in young healthy subjects through new evaluation tools. J. Funct. Morphol. Kinesiol. 2019;4:5. doi: 10.3390/jfmk4010005.</ref>  
==== Content supporting correlation ====
====Content supporting correlation====


The authors of the scientific reports, who recognize the associations between the systems in question, give two indications for the possible interactions. The first, i.e. ascending disturbances, refers to the situation in which bad posture and disturbances of the peripheral structures (e.g. lower limbs), through myofascial neuromotor activities and the dura mater, functionally condition the cranio-mandibular structures. Conversely, a chain of descending disorders is present when anomalies of the craniomandibular region affect posture and body areas located more distally, including the pelvis and lower extremities.<ref name=":0" /><ref name=":11">Michalakis K.X., Kamalakidis S.N., Pissiotis A.L., Hirayama H. The Effect of clenching and occlusal instability on body weight distribution, assessed by a postural platform. BioMed Res. Int. 2019;2019:7342541. doi: 10.1155/2019/7342541.</ref><ref name=":12">Julià-Sánchez S., Álvarez-Herms J., Cirer-Sastre R., Corbi F., Burtscher M. The influence of dental occlusion on dynamic balance and muscular tone. Front. Physiol. 2020;10:1626. doi: 10.3389/fphys.2019.01626.</ref><ref>Pacella E., Dari M., Giovannoni D., Mezio M., Caterini L., Costantini A. The relationship between occlusion and posture: A systematic review. Orthodontics. 2017;8:WMC005374.</ref><blockquote>[[File:Question 2.jpg|left|50x50px]]And on this nothing to say because no one can deny an anatomical-functional correlation between vestibular systems, cerebellum, trigeminal and peripheral neuromotor system. This is not an opinion but a proven scientific observation already reported somewhere in Masticationpedia.
The authors of the scientific reports, who recognize the associations between the systems in question, give two indications for the possible interactions. The first, i.e. ascending disturbances, refers to the situation in which bad posture and disturbances of the peripheral structures (e.g. lower limbs), through myofascial neuromotor activities and the dura mater, functionally condition the cranio-mandibular structures. Conversely, a chain of descending disorders is present when anomalies of the craniomandibular region affect posture and body areas located more distally, including the pelvis and lower extremities.<ref name=":0" /><ref name=":11">Michalakis K.X., Kamalakidis S.N., Pissiotis A.L., Hirayama H. The Effect of clenching and occlusal instability on body weight distribution, assessed by a postural platform. BioMed Res. Int. 2019;2019:7342541. doi: 10.1155/2019/7342541.</ref><ref name=":12">Julià-Sánchez S., Álvarez-Herms J., Cirer-Sastre R., Corbi F., Burtscher M. The influence of dental occlusion on dynamic balance and muscular tone. Front. Physiol. 2020;10:1626. doi: 10.3389/fphys.2019.01626.</ref><ref>Pacella E., Dari M., Giovannoni D., Mezio M., Caterini L., Costantini A. The relationship between occlusion and posture: A systematic review. Orthodontics. 2017;8:WMC005374.</ref><blockquote>[[File:Question 2.jpg|left|50x50px]]And on this nothing to say because no one can deny an anatomical-functional correlation between vestibular systems, cerebellum, trigeminal and peripheral neuromotor system. This is not an opinion but a proven scientific observation already reported somewhere in Masticationpedia.
Line 24: Line 56:
VEMPs, translated into Myogenic Vestibular Evoked Potentials are proof of this. Acoustic stimuli can evoke EMG reflex responses in the masseter muscle called Vestibular Evoked Myogenic Potentials (VEMPs). Although these findings have previously been attributed to activation of cochlear (high-intensity sound) receptors, these may also activate vestibular receptors. Because anatomical and physiological studies in both animals and humans have demonstrated that the masseter muscles are a target for vestibular inputs, the authors of this study reevaluated the vestibular contribution for masseter reflexes. This is a typical example of a basic level 'Complex System' as it consists of only two cranial nervous systems but, at the same time, they interact by activating monosynaptic and polysynaptic circuits (Figure 1).</blockquote>
VEMPs, translated into Myogenic Vestibular Evoked Potentials are proof of this. Acoustic stimuli can evoke EMG reflex responses in the masseter muscle called Vestibular Evoked Myogenic Potentials (VEMPs). Although these findings have previously been attributed to activation of cochlear (high-intensity sound) receptors, these may also activate vestibular receptors. Because anatomical and physiological studies in both animals and humans have demonstrated that the masseter muscles are a target for vestibular inputs, the authors of this study reevaluated the vestibular contribution for masseter reflexes. This is a typical example of a basic level 'Complex System' as it consists of only two cranial nervous systems but, at the same time, they interact by activating monosynaptic and polysynaptic circuits (Figure 1).</blockquote>


==== Tmj disorders and posture ====
====Tmj disorders and posture====
It has been shown that changes in the temporomandibular joint (TMJ) can have a direct impact on muscle activity in terms of posture, stability and physical performance.<ref name=":2" /><ref>Moon H.J., Lee Y.K. The relationship between dental occlusion/temporomandibular joint status and general body health: Part 1. Dental occlusion and TMJ status exert an influence on general body health. J. Altern. Complement. Med. 2011;17:[tel:995–1000 995–1000]. doi: 10.1089/acm.2010.0739.</ref><ref>Souza J.A., Pasinato F., Correa E.A., da Silva A.M. Global body posture and plantar pressure distribution in individuals with and without temporomandibular disorder: A preliminary study. J. Manip. Physiol. Ther. 2014;37:407–414.</ref>  However, there is a lack of high-quality studies using advanced measurement tools to better understand the phenomenon under investigation.<ref>Ferrillo M., Marotta N., Giudice A., Calafiore D., Curci C., Fortunato L., Ammendolia A., de Sire A. Effects of occlusal splints on spinal posture in patients with temporomandibular disorders: A systematic review. Healthcare. 2022;10:739. doi: 10.3390/healthcare10040739.</ref> The study authors evaluated the impact of masticatory abnormalities on postural control and focuses on evaluating individuals with specific malocclusions that determine the anteroposterior position of the mandible. According to some researchers, malocclusion, like TMD, can affect the osteoarticular system of the whole body and become a source of persistent pain and favor the development and  to become chronic of some postural defects. According to the cited authors, occlusal disturbances can lead to an altered stimulation of the periodontal proprioceptors, causing changes in the tension of the neck muscles and postural muscles and changes in the position of the head, followed by compensatory changes in the anatomical regions in their immediate vicinity. Over time, this can affect the posture, center of gravity position, or foot contact with the ground.<ref name=":0" /><ref name=":11" /><ref name=":12" /><ref>Saccucci M., Tettamanti L., Mummolo S., Polimeni A., Festa F., Tecco S. Scoliosis and dental occlusion: A review of the literature. Scoliosis. 2011;6:1–15. doi: 10.1186/1748-7161-6-15. </ref><ref>Sforza C., Tartaglia G.M., Solimene U., Morgan V., Kaspranskiy R.R., Ferrario V.F. Occlusion, sternocleidomastoid muscle activity, and body sway: A pilot study in male astronauts. Cranio. 2006;24:43–49. doi: 10.1179/crn.2006.008</ref>
It has been shown that changes in the temporomandibular joint (TMJ) can have a direct impact on muscle activity in terms of posture, stability and physical performance.<ref name=":2" /><ref>Moon H.J., Lee Y.K. The relationship between dental occlusion/temporomandibular joint status and general body health: Part 1. Dental occlusion and TMJ status exert an influence on general body health. J. Altern. Complement. Med. 2011;17:[tel:995–1000 995–1000]. doi: 10.1089/acm.2010.0739.</ref><ref>Souza J.A., Pasinato F., Correa E.A., da Silva A.M. Global body posture and plantar pressure distribution in individuals with and without temporomandibular disorder: A preliminary study. J. Manip. Physiol. Ther. 2014;37:407–414.</ref>  However, there is a lack of high-quality studies using advanced measurement tools to better understand the phenomenon under investigation.<ref>Ferrillo M., Marotta N., Giudice A., Calafiore D., Curci C., Fortunato L., Ammendolia A., de Sire A. Effects of occlusal splints on spinal posture in patients with temporomandibular disorders: A systematic review. Healthcare. 2022;10:739. doi: 10.3390/healthcare10040739.</ref> The study authors evaluated the impact of masticatory abnormalities on postural control and focuses on evaluating individuals with specific malocclusions that determine the anteroposterior position of the mandible. According to some researchers, malocclusion, like TMD, can affect the osteoarticular system of the whole body and become a source of persistent pain and favor the development and  to become chronic of some postural defects. According to the cited authors, occlusal disturbances can lead to an altered stimulation of the periodontal proprioceptors, causing changes in the tension of the neck muscles and postural muscles and changes in the position of the head, followed by compensatory changes in the anatomical regions in their immediate vicinity. Over time, this can affect the posture, center of gravity position, or foot contact with the ground.<ref name=":0" /><ref name=":11" /><ref name=":12" /><ref>Saccucci M., Tettamanti L., Mummolo S., Polimeni A., Festa F., Tecco S. Scoliosis and dental occlusion: A review of the literature. Scoliosis. 2011;6:1–15. doi: 10.1186/1748-7161-6-15. </ref><ref>Sforza C., Tartaglia G.M., Solimene U., Morgan V., Kaspranskiy R.R., Ferrario V.F. Occlusion, sternocleidomastoid muscle activity, and body sway: A pilot study in male astronauts. Cranio. 2006;24:43–49. doi: 10.1179/crn.2006.008</ref>


Line 40: Line 72:




 
====Bruxism and Posture====
==== Bruxism and Posture ====
Angle suggested a classification of occlusion and malocclusion based on the anteroposterior position of the first molar and the position of the canines.<ref>Bernabé E., Sheiham A., de Oliveira C.M. Condition-specific impacts on quality of life attributed to malocclusion by adolescents with normal occlusion and Class I, II and III malocclusion. Angle Orthod. 2008;78:977–982. doi: 10.2319/091707-444.1</ref><ref name=":13">Okeson J.P.  Management of Temporomandibular Disorders and Occlusion.Mosby; Maryland Heights, MO, USA: 2019.</ref>Malocclusion is often a congenital condition, resulting from hereditary or environmental factors. It is also caused by local factors, such as an abnormal pattern of breathing or postural defects, as well as oral parafunctions such as nail biting or teeth grinding (bruxism).<ref name=":13" />According to Lombardo's analyses, occlusal anomalies occur on average in 56% of the general population.<ref name=":14">Lombardo G., Vena F., Negr P., Pagano S., Barilotti C., Paglia L., Colombo S., Orso M., Cianetti S. Worldwide prevalence of malocclusion in the different stages of dentition: A systematic review and meta-analysis. Eur. J. Paediatr. Dent. 2020;21:115–122.</ref> Their prevalence increases with age. Given their increasing prevalence in later age groups and the consequences they entail, it is reasonable to expect a large number of adult patients who will require complex and expensive multidisciplinary treatment.<ref name=":14" /><ref>Kawala B., Szumielewicz M., Kozanecka A. Are orthodontists still needed? Epidemiology of malocclusion among polish children and teenagers in last 15 years. Dent. Med. Probl. 2009;46:273–278</ref>
Angle suggested a classification of occlusion and malocclusion based on the anteroposterior position of the first molar and the position of the canines.<ref>Bernabé E., Sheiham A., de Oliveira C.M. Condition-specific impacts on quality of life attributed to malocclusion by adolescents with normal occlusion and Class I, II and III malocclusion. Angle Orthod. 2008;78:977–982. doi: 10.2319/091707-444.1</ref><ref name=":13">Okeson J.P.  Management of Temporomandibular Disorders and Occlusion.Mosby; Maryland Heights, MO, USA: 2019.</ref>Malocclusion is often a congenital condition, resulting from hereditary or environmental factors. It is also caused by local factors, such as an abnormal pattern of breathing or postural defects, as well as oral parafunctions such as nail biting or teeth grinding (bruxism).<ref name=":13" />According to Lombardo's analyses, occlusal anomalies occur on average in 56% of the general population.<ref name=":14">Lombardo G., Vena F., Negr P., Pagano S., Barilotti C., Paglia L., Colombo S., Orso M., Cianetti S. Worldwide prevalence of malocclusion in the different stages of dentition: A systematic review and meta-analysis. Eur. J. Paediatr. Dent. 2020;21:115–122.</ref> Their prevalence increases with age. Given their increasing prevalence in later age groups and the consequences they entail, it is reasonable to expect a large number of adult patients who will require complex and expensive multidisciplinary treatment.<ref name=":14" /><ref>Kawala B., Szumielewicz M., Kozanecka A. Are orthodontists still needed? Epidemiology of malocclusion among polish children and teenagers in last 15 years. Dent. Med. Probl. 2009;46:273–278</ref>


Line 56: Line 87:
As far as the authors contesting the correlation between occlusion and posture are concerned, we can report the results of Giuseppe Perinetti et al.<ref name=":8" /> of 122 subjects, including 86 males and 36 females (age range 10.8 to 16.3 years) who tested negative for temporomandibular disorders or other conditions affecting the stomatognathic systems, with the exception of malocclusion. An assessment of dental occlusion included dentition stage, molar class, overjet, overbite, anterior and posterior crossbite, scissor bite, mandibular crowding, and dental midline deviation. Furthermore, body posture was recorded through static posturography using a vertical force platform. Recordings were performed under two conditions:  
As far as the authors contesting the correlation between occlusion and posture are concerned, we can report the results of Giuseppe Perinetti et al.<ref name=":8" /> of 122 subjects, including 86 males and 36 females (age range 10.8 to 16.3 years) who tested negative for temporomandibular disorders or other conditions affecting the stomatognathic systems, with the exception of malocclusion. An assessment of dental occlusion included dentition stage, molar class, overjet, overbite, anterior and posterior crossbite, scissor bite, mandibular crowding, and dental midline deviation. Furthermore, body posture was recorded through static posturography using a vertical force platform. Recordings were performed under two conditions:  


# mandibular rest position (RP)
#mandibular rest position (RP)
#dental intercuspid position (ICP).
#dental intercuspid position (ICP).


Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,073

edits