Difference between revisions of "'Introduction'"

9,461 bytes removed ,  7 months ago
no edit summary
Line 15: Line 15:


=== The phases of paradigm change according to Thomas Kuhn===
=== The phases of paradigm change according to Thomas Kuhn===
In the course of the last century, there has been an exponential increase in technological and methodological "Innovations",<ref>{{cita libro  
[[File:The phases of paradigm change according to Thomas Kuhn.jpg|right|thumb|The phases of paradigm change according to Thomas Kuhn]]In the course of the last century, there has been an exponential increase in technological and methodological "Innovations",<ref>{{cita libro  
  | autore = Heft MW
  | autore = Heft MW
  | autore2 = Fox CH
  | autore2 = Fox CH
Line 84: Line 84:


===='''Kuhn's phases in Dentistry'''====
===='''Kuhn's phases in Dentistry'''====
Thomas Kuhn identifies in the evolution of a scientific paradigm five distinct phases, a process that holds crucial importance for Masticationpedia. To stay in line with the project's objectives, we will focus on the description of the three most significant phases, as outlined in the book's index.[[File:The phases of paradigm change according to Thomas Kuhn.jpg|right|thumb|The phases of paradigm change according to Thomas Kuhn]]
Thomas Kuhn identifies in the evolution of a scientific paradigm five distinct phases, a process that holds crucial importance for Masticationpedia. To stay in line with the project's objectives, we will focus on the description of the three most significant phases, as outlined in the book's index.


'''Thomas Kuhn''' in his most famous work states that ''science cyclically passes through some phases indicative of its operation''. According to Kuhn, ''science is paradigmatic'', and the demarcation between science and pseudoscience can be traced back to the existence of a '''paradigm'''. The evolution of scientific progress is assimilated to ''a continuous curve which undergoes discontinuity in paradigm changes''.   
'''Thomas Kuhn''' in his most famous work states that ''science cyclically passes through some phases indicative of its operation''. According to Kuhn, ''science is paradigmatic'', and the demarcation between science and pseudoscience can be traced back to the existence of a '''paradigm'''. The evolution of scientific progress is assimilated to ''a continuous curve which undergoes discontinuity in paradigm changes''.   
Line 91: Line 91:


Kuhn, on the other hand, divides the evolution of a paradigm into five phases; this is a fundamental process for Masticationpedia, but to stay tuned with the project we will limit ourselves to describing the three most significant phases shared in the project and indicated in the index of the book:  
Kuhn, on the other hand, divides the evolution of a paradigm into five phases; this is a fundamental process for Masticationpedia, but to stay tuned with the project we will limit ourselves to describing the three most significant phases shared in the project and indicated in the index of the book:  
{|
|
|
*<u>'''''Phase 2'''''</u>, or the Normal Science<br>For instance, in the second phase of Kuhn's paradigms, called "Normal Science," scientists are considered problem solvers engaged in strengthening the correspondence between the paradigm and natural reality. This phase is based on a set of fundamental principles established by the paradigm itself, which are not subject to dispute but are instead used to define the guidelines for future research projects. During this phase, the development of the necessary measurement tools to conduct experiments takes place, and the majority of the scientific literature is produced. The results obtained in this phase contribute significantly to the advancement of scientific knowledge. In normal science, both successes and failures occur; the latter are identified by Kuhn as "anomalies," i.e., events that contradict the prevailing paradigm.
|-
|&nbsp;
|
*<u>'''''Phase 4'''''</u>, or the '''Crisis of the Paradigm'''<br>In response to the crisis, there will be the formation of several new paradigms during this period. These emerging paradigms, therefore, will not originate from the successes of the previous theory, but rather from the rejection of the established models of the dominant paradigm. Continuing along this line, Masticationpedia will dedicate attention to the crisis of the masticatory rehabilitative paradigm, through the review of theories, theorems, axioms, currents of thought, and diagnostic research criteria. Subsequently, the focus will shift to the fifth phase.
|-
|&nbsp;
|
*<u>'''''Phase 5'''''</u>, or the '''Scientific Revolution'''<br>Phase 5 is characterized by the scientific revolution. During the period of extraordinary scientific activities, a debate will develop within the scientific community on which new paradigm to adopt. However, the prevailing paradigm will not necessarily be the "truest" or most efficient one, but rather the one that manages to arouse the interest of a sufficient number of scientists and earn the trust of the community. According to Kuhn, competing paradigms have nothing in common, not even the foundations, making them "incommensurable." The choice of paradigm, as mentioned, occurs on socio-psychological or biological bases, with younger scientists replacing the older ones. This battle between paradigms will resolve the crisis, the new paradigm will be named, and science will return to Phase 1. Following the same principle of Phase 4, Masticationpedia will introduce, in the chapter named "Extraordinary Sciences," a new paradigmatic model in the field of Masticatory System rehabilitation, examining its principles, motivations, scientific clinical experiences, and particularly, a radical change in the field of medical diagnostics. This change is fundamentally based on "System Inference," rather than symptom-based inference, assigning primary importance to the objectivity of data.
|}


It's almost taken for granted that Kuhn's scientific philosophy gives priority to discipline, since an anomaly within the genetic paradigm will be more easily recognized by a geneticist rather than a neurophysiologist. This concept, however, seems to contradict the epistemological evolution of Science, thereby making a detailed analysis of this apparent discrepancy appropriate.
It's almost taken for granted that Kuhn's scientific philosophy gives priority to discipline, since an anomaly within the genetic paradigm will be more easily recognized by a geneticist rather than a neurophysiologist. This concept, however, seems to contradict the epistemological evolution of Science, thereby making a detailed analysis of this apparent discrepancy appropriate.
Line 170: Line 156:


...because the very concept of epistemology meets continuous implementations, like in medicine:
...because the very concept of epistemology meets continuous implementations, like in medicine:
{|
|-
|
*'''''<math>P-value</math>''''':  In medicine, for example, to confirm an experiment or validate a series of data collected through laboratory instruments or surveys, reliance is placed on "Statistical Inference," and in particular on a well-known value called "significance test" (P-value). However, even this concept, now rooted in the practice of researchers, is being questioned. A recent study has focused attention on a campaign conducted in the journal "Nature" against the use of the "significance test."<ref>{{cita libro
| autore = Amrhein V
| autore2 = Greenland S
| autore3 = McShane B
| titolo = Scientists rise up against statistical significance
| url = https://www.ncbi.nlm.nih.gov/pubmed/30894741
| volume =
| opera = Nature
| anno = 2019
| editore =
| città =
| ISBN =
| LCCN =
| DOI = 10.1038/d41586-019-00857-9
| OCLC =
}} Mar;567(7748):305-307.</ref> With over 800 signatories, including eminent scientists, this campaign can be seen as an important turning point and a "Silent Revolution" in the field of statistics, touching logical and epistemological aspects.<ref>{{cita libro
| autore = Rodgers JL
| titolo = The epistemology of mathematical and statistical modeling: a quiet methodological revolution
| url = https://www.ncbi.nlm.nih.gov/pubmed/20063905
| volume =
| opera = Am Psychol
| anno = 2010
| editore =
| città =
| ISBN =
| LCCN =
| DOI = 10.1037/a0018326
| OCLC =
}} Jan;65(1):1-12.</ref><ref>{{cita libro
| autore = Meehl P
| titolo = The problem is epistemology, not statistics: replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions
| url =
| volume =
| opera =
| anno = 1997
| editore =
| città =
| ISBN =
| LCCN =
| DOI =
| OCLC =
}}, in eds Harlow L. L., Mulaik S. A., Steiger J. H.,  ''What If There Were No Significance Tests?'' - editors.  (Mahwah: Erlbaum, 393–425. [Google Scholar]</ref><ref>{{cita libro
| autore = Sprenger J
| autore2 = Hartmann S
| titolo = Bayesian Philosophy of Science. Variations on a Theme by the Reverend Thomas Bayes
| url =
| volume =
| opera =
| anno = 2019
| editore = Oxford University Press
| città = Oxford
| ISBN =
| LCCN =
| DOI =
| OCLC =
}}</ref> The critique is aimed at overly simplified statistical analyses, still present in numerous publications. This has stimulated a debate, sponsored by the American Statistical Association, which led to the creation of a special issue of "The American Statistician Association" titled "Statistical Inference in the 21st Century: A World Beyond p < 0.05", containing 43 articles by statisticians looking towards the future[16]. This special issue proposes new ways to communicate the significance of research findings beyond the arbitrary threshold of a P-value and offers guidelines for research that accepts uncertainty, is reflective, open, and modest in claims.<ref name="wasser">{{cita libro
| autore = Wasserstein RL
| autore2 = Schirm AL
| autore3 = Lazar NA
| titolo = Moving to a World Beyond ''p'' < 0.05
| url = https://www.tandfonline.com/doi/full/10.1080/00031305.2019.1583913
| volume =
| opera = Am Stat
| anno = 2019
| editore =
| città =
| ISBN =
| LCCN =
| DOI = 10.1080/00031305.2019.1583913
| OCLC =
}} 73, 1–19. </ref> The future will reveal whether these attempts to provide more solid statistical support to science, beyond traditional significance tests, will find resonance in future publications.<ref>{{cita libro
| autore = Dettweiler Ulrich
| titolo = The Rationality of Science and the Inevitability of Defining Prior Beliefs in Empirical Research
| url = https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01866/full
| volume =
| opera = Front Psychol
| anno = 2019
| editore =
| città =
| ISBN =
| LCCN =
| DOI = 10.3389/fpsyg.2019.01866
| OCLC =
}} Aug 13;10:1866.</ref> This evolution aligns with Kuhn's concept of scientific progress, reflecting a reworking of some descriptive statistical content within the discipline.
|-
|
*'''Interdisciplinarity''': <br>In the field of science policy, it is universally recognized that solving science-based problems requires an interdisciplinary research approach (IDR), as highlighted by the European Union's Horizon 2020 project.<ref>European Union, ''[https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges Horizon 2020]''</ref> Recent studies have explored the reasons for the cognitive and epistemic difficulties that researchers encounter in conducting IDR. One identified cause is the decline of philosophical interest towards the epistemology of IDR, attributed to the dominant "Physical Paradigm of Science." This paradigm limits the recognition of significant developments in IDR, both in the context of the philosophy of science and in the practice of research itself. In response, an alternative philosophical paradigm has been proposed, called the "Engineering Paradigm of Science," which offers alternative philosophical perspectives on fundamental aspects such as the purpose of science, the nature of knowledge, the epistemic and pragmatic criteria for the acceptance of knowledge, and the role of technological tools. Consequently, it highlights the need for researchers to make use of metacognitive support structures, called metacognitive scaffolds, to facilitate the analysis and reconstruction of the processes by which knowledge is constructed across different disciplines. In the context of IDR, such metacognitive scaffolds are essential for promoting effective communication between disciplines, allowing scholars to analyze and articulate how each discipline contributes to the construction of knowledge.<ref name=":0">{{cita libro
| autore = Boon M
| autore2 = Van Baalen S
| titolo = Epistemology for interdisciplinary research - shifting philosophical paradigms of science
| url = https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383598/
| volume =
| opera = Eur J Philos Sci
| anno = 2019
| editore =
| città =
| ISBN =
| LCCN =
| DOI = 10.1007/s13194-018-0242-4
| OCLC =
}} 9(1):16.</ref><ref>{{cita libro
| autore = Boon M
| titolo = An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool
| url = https://www.ncbi.nlm.nih.gov/pubmed/28389261
| volume =
| opera = Prog Biophys Mol Biol
| anno = 2017
| editore =
| città =
| ISBN =
| LCCN =
| DOI = 10.1016/j.pbiomolbio.2017.04.001
| OCLC =
}} Oct;129:25-39.</ref>
|}


==Anomaly ''vs.'' Interdisciplinarity==
==Anomaly ''vs.'' Interdisciplinarity==
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,119

edits