Difference between revisions of "'The logic of the classical language'"

no edit summary
Line 1: Line 1:
{{main menu}}
{{main menu}}


<center><div class="colour-button">[[Special:UserLogin&returnto=Introduction+Page|Read more]]</div>
</center>
[[File:Spasmo emimasticatorio.jpg|left|300x300px]] Masticationpedia presents a transformative exploration into the integration of computational logic into medical discourse, particularly within the field of craniofacial biology. This innovative approach moves beyond traditional clinical communication, utilizing encrypted machine languages and advanced technologies like gene sequencing and high-resolution imaging to significantly enhance diagnostic accuracy and treatment efficacy. Central to this discourse is the role of epigenetics and phenomics, which provide a deeper understanding of craniofacial anomalies through the complex interplay of genetic and environmental factors, advocating for personalized medical treatments. Additionally, the text discusses the application of classical logic in medical diagnostics, which refines the development of precise diagnostic criteria and tailored treatment plans. By promoting an interdisciplinary approach and advancing a more dynamic logical framework in medical practices, Masticationpedia aims to set new standards in patient care, pushing the boundaries of scientific research to better address the intricate challenges of craniofacial disorders.
{{ArtBy|
{{ArtBy|
| autore = Gianni Frisardi
| autore = Gianni Frisardi
Line 12: Line 7:
}}
}}


== Introduction ==
<center><div class="colour-button">[[Special:UserLogin&returnto=Introduction+Page|Read more]]</div>
</center>
 
== Abstract ==
[[File:Spasmo emimasticatorio.jpg|left|300x300px]]'''Introduction'''


In the previous chapter, dedicated to the "[[Logic of medical language|Logic of Medical Language]]", we shifted focus from traditional clinical signs to an encrypted machine language, highlighting the innovative contributions of Donald E. Stanley, Daniel G. Campos, and Pat Croskerry. They emphasized the use of time as an information vector in diagnostics<ref>{{Cite book | autore = Stanley DE | autore2 = Campos DG | titolo = The logic of medical diagnosis | url = https://pubmed.ncbi.nlm.nih.gov/23974509/ | opera = Perspect Biol Med | anno = 2013 | DOI = 10.1353/pbm.2013.0019 | PMID = 23974509}}</ref><ref>{{Cite book | autore = Croskerry P | titolo = Adaptive expertise in medical decision making | url = https://www.tandfonline.com/doi/abs/10.1080/0142159X.2018.1484898 | opera = Med Teach | anno = 2018 | DOI = 10.1080/0142159X.2018.1484898 | PMID = 30033794}}</ref>.
In the previous chapter, dedicated to the "[[Logic of medical language|Logic of Medical Language]]", we shifted focus from traditional clinical signs to an encrypted machine language, highlighting the innovative contributions of Donald E. Stanley, Daniel G. Campos, and Pat Croskerry. They emphasized the use of time as an information vector in diagnostics<ref>{{Cite book | autore = Stanley DE | autore2 = Campos DG | titolo = The logic of medical diagnosis | url = https://pubmed.ncbi.nlm.nih.gov/23974509/ | opera = Perspect Biol Med | anno = 2013 | DOI = 10.1353/pbm.2013.0019 | PMID = 23974509}}</ref><ref>{{Cite book | autore = Croskerry P | titolo = Adaptive expertise in medical decision making | url = https://www.tandfonline.com/doi/abs/10.1080/0142159X.2018.1484898 | opera = Med Teach | anno = 2018 | DOI = 10.1080/0142159X.2018.1484898 | PMID = 30033794}}</ref>.


This paradigm shift does not diminish the value of clinical history but enhances it by integrating a computational approach to validate medical diagnostics. "Craniofacial Biology" is explored comprehensively, with pivotal studies by Townsend and Brook challenging existing paradigms and proposing new clinical applications through interdisciplinary approaches<ref>{{Cite book | autore = Townsend GC | autore2 = Brook AH | titolo = The face, the future, and dental practice | url = https://onlinelibrary.wiley.com/doi/epdf/10.1111/adj.12157 | opera = Aust Dent J | anno = 2014 | DOI = 10.1111/adj.12157 | PMID = 24646132}}</ref><ref>{{Cite book | autore = Sperber GH | autore2 = Sperber SM | titolo = The genesis of craniofacial biology | url = https://onlinelibrary.wiley.com/doi/epdf/10.1111/adj.12131 | opera = Aust Dent J | anno = 2014 | DOI = 10.1111/adj.12131 | PMID = 24495071}}</ref>.
This paradigm shift does not diminish the value of clinical history but enhances it by integrating a computational approach to validate medical diagnostics. "Craniofacial Biology" is explored comprehensively, with pivotal studies by Townsend and Brook challenging existing paradigms and proposing new clinical applications through interdisciplinary approaches.<ref>{{Cite book | autore = Townsend GC | autore2 = Brook AH | titolo = The face, the future, and dental practice | url = https://onlinelibrary.wiley.com/doi/epdf/10.1111/adj.12157 | opera = Aust Dent J | anno = 2014 | DOI = 10.1111/adj.12157 | PMID = 24646132}}</ref><ref>{{Cite book | autore = Sperber GH | autore2 = Sperber SM | titolo = The genesis of craniofacial biology | url = https://onlinelibrary.wiley.com/doi/epdf/10.1111/adj.12131 | opera = Aust Dent J | anno = 2014 | DOI = 10.1111/adj.12131 | PMID = 24495071}}</ref>Additionally, the role of epigenetics and phenomics in this field is underlined, offering new insights into dental and craniofacial anomalies through the genetic, epigenetic, and environmental interplay.<ref>{{Cite book | autore = Williams SD | autore2 = Hughes TE | autore3 = Adler CJ | autore4 = Brook AH | autore5 = Townsend GC | titolo = Epigenetics: a new frontier in dentistry | url = https://onlinelibrary.wiley.com/doi/epdf/10.1111/adj.12155 | opera = Aust Dent J | anno = 2014 | DOI = 10.1111/adj.12155 | PMID = 24611746}}</ref><ref>{{Cite book | autore = Yong R | autore2 = Ranjitkar S | autore3 = Townsend GC | autore4 = Brook AH | autore5 = Smith RN | autore6 = Evans AR | autore7 = Hughes TE | autore8 = Lekkas D | titolo = Dental phenomics | url = https://onlinelibrary.wiley.com/doi/epdf/10.1111/adj.12156 | opera = Aust Dent J | anno = 2014 | DOI = 10.1111/adj.12156 | PMID = 24611797}}</ref>This extensive review also incorporates diverse studies, illustrating the dynamic complexities of craniofacial development and the significant implications for future dental practices<ref>{{Cite book | autore = Peterkova R | autore2 = Hovorakova M | autore3 = Peterka M | autore4 = Lesot H | titolo = Three‐dimensional analysis of the early development of the dentition | url = https://onlinelibrary.wiley.com/doi/epdf/10.1111/adj.12130 | opera = Aust Dent J | anno = 2014 | DOI = 10.1111/adj.12130}}</ref>. In summary, this chapter emphasizes not only the advanced computational methodologies enhancing diagnostic precision but also the critical interdisciplinary perspectives necessary for holistic patient care in craniofacial anomalies.


Additionally, the role of epigenetics and phenomics in this field is underlined, offering new insights into dental and craniofacial anomalies through the genetic, epigenetic, and environmental interplay<ref>{{Cite book | autore = Williams SD | autore2 = Hughes TE | autore3 = Adler CJ | autore4 = Brook AH | autore5 = Townsend GC | titolo = Epigenetics: a new frontier in dentistry | url = https://onlinelibrary.wiley.com/doi/epdf/10.1111/adj.12155 | opera = Aust Dent J | anno = 2014 | DOI = 10.1111/adj.12155 | PMID = 24611746}}</ref><ref>{{Cite book | autore = Yong R | autore2 = Ranjitkar S | autore3 = Townsend GC | autore4 = Brook AH | autore5 = Smith RN | autore6 = Evans AR | autore7 = Hughes TE | autore8 = Lekkas D | titolo = Dental phenomics | url = https://onlinelibrary.wiley.com/doi/epdf/10.1111/adj.12156 | opera = Aust Dent J | anno = 2014 | DOI = 10.1111/adj.12156 | PMID = 24611797}}</ref>.
'''Mathematical Formalism:''' In this chapter, we revisit the clinical case of Mary Poppins, who has been suffering from Orofacial Pain for over ten years due to "Temporomandibular Disorder" (TMD). This section delves into the complexity of using Classic Language Logic to achieve a precise diagnostic definition.


This extensive review also incorporates diverse studies, illustrating the dynamic complexities of craniofacial development and the significant implications for future dental practices<ref>{{Cite book | autore = Peterkova R | autore2 = Hovorakova M | autore3 = Peterka M | autore4 = Lesot H | titolo = Three‐dimensional analysis of the early development of the dentition | url = https://onlinelibrary.wiley.com/doi/epdf/10.1111/adj.12130 | opera = Aust Dent J | anno = 2014 | DOI = 10.1111/adj.12130}}</ref>.
'''Propositions''' The simplest propositions in logic can be combined using logical operators and quantifiers to construct complex logical statements, enhancing the precision and rigor required in mathematical and scientific reasoning. Key logical operators include:
 
In summary, this chapter emphasizes not only the advanced computational methodologies enhancing diagnostic precision but also the critical interdisciplinary perspectives necessary for holistic patient care in craniofacial anomalies.
== Mathematical Formalism ==
In this chapter, we revisit the clinical case of Mary Poppins, who has been suffering from Orofacial Pain for over ten years due to "Temporomandibular Disorder" (TMD). This section delves into the complexity of using Classic Language Logic to achieve a precise diagnostic definition.
 
=== Propositions ===
The simplest propositions in logic can be combined using logical operators and quantifiers to construct complex logical statements, enhancing the precision and rigor required in mathematical and scientific reasoning. Key logical operators include:
* '''Conjunction''' (<math>\land</math>),
* '''Conjunction''' (<math>\land</math>),
* '''Disjunction''' (<math>\lor</math>),
* '''Disjunction''' (<math>\lor</math>),
Line 38: Line 30:
These tools help form the backbone of logical reasoning used to navigate complex diagnostic processes in medical practice.
These tools help form the backbone of logical reasoning used to navigate complex diagnostic processes in medical practice.


=== Proof by Contradiction ===
'''Proof by Contradiction:''' This method involves demonstrating that the negation of a proposition leads to a contradiction, thereby proving the original proposition under the principle of the "law of excluded middle". This fundamental aspect of classical logic asserts that a proposition must be true if its negation is false<ref>{{Cite book | author = Pereira LM | author2 = Pinto AM | title = Reductio ad Absurdum Argumentation in Normal Logic Programs | url = http://www-lia.deis.unibo.it/confs/ArgNMR/proceedings/ArgNMR-proceedings.pdf#page=100 | year = 2007 | publisher = Arg NMR | city = Tempe, Arizona - Caparica, Portugal}}</ref>.
This method involves demonstrating that the negation of a proposition leads to a contradiction, thereby proving the original proposition under the principle of the "law of excluded middle". This fundamental aspect of classical logic asserts that a proposition must be true if its negation is false<ref>{{Cite book | author = Pereira LM | author2 = Pinto AM | title = Reductio ad Absurdum Argumentation in Normal Logic Programs | url = http://www-lia.deis.unibo.it/confs/ArgNMR/proceedings/ArgNMR-proceedings.pdf#page=100 | year = 2007 | publisher = Arg NMR | city = Tempe, Arizona - Caparica, Portugal}}</ref>.
 
=== Predicates ===
Predicates are expressions that assert something about a set of elements, such as "all volleyball players are tall" (<math>X</math> being volleyball players). They are used extensively to describe groups of patients or medical conditions, providing a structured way to apply logical reasoning in medical diagnoses.


{{quote|text=So, does Mary Poppins suffer from TMD or not?|sign=Let's see what classical language logic tells us}}
'''Predicates:''' Predicates are expressions that assert something about a set of elements, such as "all volleyball players are tall" (<math>X</math> being volleyball players). They are used extensively to describe groups of patients or medical conditions, providing a structured way to apply logical reasoning in medical diagnoses.{{quote|text=So, does Mary Poppins suffer from TMD or not?|sign=Let's see what classical language logic tells us}}


Further diagnostic support is provided through the analysis of axiographic traces and surface electromyography, confirming the presence of TMD based on the observed asymmetry and functional abnormalities in masticatory muscles<ref>{{cite book | autore = Castroflorio T | autore2 = Talpone F | autore3 = Deregibus A | autore4 = Piancino MG | autore5 = Bracco P | titolo = Effects of a Functional Appliance on Masticatory Muscles of Young Adults Suffering From Muscle-Related Temporomandibular Disorder | url = https://pubmed.ncbi.nlm.nih.gov/15189308/ | opera = J Oral Rehabil | anno = 2004 | DOI = 10.1111/j.1365-2842.2004.01274.x | PMID = 15189308}}</ref><ref>{{cite book | autore = Maeda N | autore2 = Kodama N | autore3 = Manda Y | autore4 = Kawakami S | autore5 = Oki K | autore6 = Minagi S | titolo = Characteristics of Grouped Discharge Waveforms Observed in Long-term Masseter Muscle Electromyographic Recording: A Preliminary Study | url = http://ousar.lib.okayama-u.ac.jp/files/public/5/56938/20190821181112825794/73_4_357.pdf | opera = Acta Med Okayama | anno = 2019 | DOI = 10.18926/AMO/56938 | PMID = 31439959}}</ref>.
Further diagnostic support is provided through the analysis of axiographic traces and surface electromyography, confirming the presence of TMD based on the observed asymmetry and functional abnormalities in masticatory muscles<ref>{{cite book | autore = Castroflorio T | autore2 = Talpone F | autore3 = Deregibus A | autore4 = Piancino MG | autore5 = Bracco P | titolo = Effects of a Functional Appliance on Masticatory Muscles of Young Adults Suffering From Muscle-Related Temporomandibular Disorder | url = https://pubmed.ncbi.nlm.nih.gov/15189308/ | opera = J Oral Rehabil | anno = 2004 | DOI = 10.1111/j.1365-2842.2004.01274.x | PMID = 15189308}}</ref><ref>{{cite book | autore = Maeda N | autore2 = Kodama N | autore3 = Manda Y | autore4 = Kawakami S | autore5 = Oki K | autore6 = Minagi S | titolo = Characteristics of Grouped Discharge Waveforms Observed in Long-term Masseter Muscle Electromyographic Recording: A Preliminary Study | url = http://ousar.lib.okayama-u.ac.jp/files/public/5/56938/20190821181112825794/73_4_357.pdf | opera = Acta Med Okayama | anno = 2019 | DOI = 10.18926/AMO/56938 | PMID = 31439959}}</ref>.
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,784

edits