Difference between revisions of "Encrypted code: Bilateral Motor Evoked Potentials of trigeminal root"

no edit summary
Line 1: Line 1:
{{main menu}}
{{main menu}}
{{Versions
 
| en = Encrypted code: Bilateral Motor Evoked Potentials of trigeminal root
| it = Codice criptato: Potenziali Evocati Motori Bilaterali della radice trigeminale
| fr = 'Code crypté : Potentiels évoqués moteurs bilatéraux de la racine du trijumeau'
| de = 'Verschlüsselter Code: Bilaterale motorisch evozierte Potenziale der Trigeminuswurzel'
| es = 'Código cifrado: Potenciales evocados motores bilaterales de la raíz del trigémino'
| pt = <!-- portoghese -->
| ru = <!-- russo -->
| pl = <!-- polacco -->
| fi = <!-- finlandese/suomi -->
| ca = <!-- catalano -->
| ja = <!-- giapponese -->
}}
[[File:Meningioma 3 by Gianni Frisardi.jpeg|link=link=Special:FilePath/Meningioma_3_by_Gianni_Frisardi.jpg|alt=|left|frameless]]
[[File:Meningioma 3 by Gianni Frisardi.jpeg|link=link=Special:FilePath/Meningioma_3_by_Gianni_Frisardi.jpg|alt=|left|frameless]]
 In this last chapter referring to the correlation between dental malocclusion and postural disorders we can perceive how the axioms sometimes hastily generated from a limited basic knowledge in the field of trigeminal neurophysiopathology can cause serious damage from a diagnostic point of view. The patient 'Balancer' presented in the previous chapters had been suffering for more than 10 years from a meningioma at the base of the skull which, due to its progressively growing volume, compressed and simultaneously stretched the sensory and motor fibers of the trigeminal system as well as damaging the midbrain centers adjacent to the tumor. The term used by the patient in reporting the disturbance in verbal language, was 'chewing difficulty' but in machine language it should have been decrypted in 'lack of the masticatory stereognosic effect' due to proprioceptive sensory deficit. The absence of the jaw jerk on the right side, in fact, demonstrates the real extent of the damage. The <sub>b</sub>Root-MEPs confirm the organic damage and the latency asymmetry of the electrical silent period concludes the clinical diagnosis. MRI shows the severe neurological complication of brainstem displacement. It should be noted that a meningioma of this size increases in volume until it reaches, as in our case, a diameter of 8 cm, with a ten-year time latency. The question is the following: in the early stages of the volumetric increase where only masticatory-type disturbances reported to dental colleagues were appreciable, would it have been possible to make an electrophysiological diagnosis of organic trigeminal damage? Of course yes, because, perhaps we would not have witnessed an absence of reflexes both in latency and in amplitude but we would certainly have noticed a significant asymmetry and a latency delay of the silent period as well as an initial amplitude anomaly in the <sub>b</sub>Root-MEPs. In conclusion, the correlation between the vestibular and trigeminal system, although present from an anatomical and neurophysiopathological point of view, should not be considered by masticatory rehabilitation clinical procedures because an error in the differential diagnosis is too high and dangerous.
 In this last chapter referring to the correlation between dental malocclusion and postural disorders we can perceive how the axioms sometimes hastily generated from a limited basic knowledge in the field of trigeminal neurophysiopathology can cause serious damage from a diagnostic point of view. The patient 'Balancer' presented in the previous chapters had been suffering for more than 10 years from a meningioma at the base of the skull which, due to its progressively growing volume, compressed and simultaneously stretched the sensory and motor fibers of the trigeminal system as well as damaging the midbrain centers adjacent to the tumor. The term used by the patient in reporting the disturbance in verbal language, was 'chewing difficulty' but in machine language it should have been decrypted in 'lack of the masticatory stereognosic effect' due to proprioceptive sensory deficit. The absence of the jaw jerk on the right side, in fact, demonstrates the real extent of the damage. The <sub>b</sub>Root-MEPs confirm the organic damage and the latency asymmetry of the electrical silent period concludes the clinical diagnosis. MRI shows the severe neurological complication of brainstem displacement. It should be noted that a meningioma of this size increases in volume until it reaches, as in our case, a diameter of 8 cm, with a ten-year time latency. The question is the following: in the early stages of the volumetric increase where only masticatory-type disturbances reported to dental colleagues were appreciable, would it have been possible to make an electrophysiological diagnosis of organic trigeminal damage? Of course yes, because, perhaps we would not have witnessed an absence of reflexes both in latency and in amplitude but we would certainly have noticed a significant asymmetry and a latency delay of the silent period as well as an initial amplitude anomaly in the <sub>b</sub>Root-MEPs. In conclusion, the correlation between the vestibular and trigeminal system, although present from an anatomical and neurophysiopathological point of view, should not be considered by masticatory rehabilitation clinical procedures because an error in the differential diagnosis is too high and dangerous.
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,073

edits