Difference between revisions of "Store:LPLen04"

no edit summary
Line 60: Line 60:
''(hover over the images)''
''(hover over the images)''
<gallery widths="350" heights="282" perrow="2" mode="slideshow">
<gallery widths="350" heights="282" perrow="2" mode="slideshow">
File:Spasmo emimasticatorio.jpg|'''<!--81-->Figure 1:''' <!--82-->Patient reporting "Orofacial pain in the right hemilateral"
File:Spasmo emimasticatorio.jpg|'''<!--81-->Figure 1:''' Patient reporting "Orofacial pain in the right hemilateral"
File:Spasmo emimasticatorio ATM.jpg|'''<!--83-->Figure 2:''' <!--84-->Patient's TMJ Stratigraphy showing signs of condylar flattening and osteophyte
File:Spasmo emimasticatorio ATM.jpg|'''<!--83-->Figure 2:''' Patient's TMJ Stratigraphy showing signs of condylar flattening and osteophyte
File:Atm1 sclerodermia.jpg|'''<!--85-->Figure 3:''' <!--86-->Computed Tomography of the TMJ
File:Atm1 sclerodermia.jpg|'''<!--85-->Figure 3:''' Computed Tomography of the TMJ
File:Spasmo emimasticatorio assiografia.jpg|'''<!--87-->Figure 4:''' <!--88-->Axiography of the patient showing a flattening of the chewing pattern on the right condyle
File:Spasmo emimasticatorio assiografia.jpg|'''<!--87-->Figure 4:''' Axiography of the patient showing a flattening of the chewing pattern on the right condyle
File:EMG2.jpg|'''<!--89-->Figure 5:''' <!--90-->EMG Interferential Pattern. Overlapping upper traces corresponding to the right masseter, lower to the left masseter.
File:EMG2.jpg|'''<!--89-->Figure 5:''' EMG Interferential Pattern. Overlapping upper traces corresponding to the right masseter, lower to the left masseter.
</gallery>
</gallery>
</center>
</center>
Line 83: Line 83:
#Each subset <math>C_i</math> must be 'elementary', i.e. it must not be further divided into other subsets, because if these existed they would have no causal relevance.
#Each subset <math>C_i</math> must be 'elementary', i.e. it must not be further divided into other subsets, because if these existed they would have no causal relevance.


Now let us assume, for example, that the population sample <math>n</math>, to which our good patient Mary Poppins belongs, is a category of subjects aged 20 to 70. We also assume that in this population we have those who present the elements belonging to the data set <math>D=\{\delta_1,.....\delta_n\}</math> which correspond to the laboratory tests mentioned above and precisa in '[[The logic of classical language]]'.
Now let us assume, for example, that the population sample <math>n</math>, to which our good patient Mary Poppins belongs, is a category of subjects aged 20 to 70. We also assume that in this population we have those who present the elements belonging to the data set <math>D=\{\delta_1,.....\delta_n\}</math> which correspond to the laboratory tests mentioned above and precisa in '[[The logic of the classical language|The logic of classical language]]'.


Let us suppose that in a sample of 10,000 subjects from 20 to 70 we will have an incidence of 30 subjects <math>p(D)=0.003</math> showing clinical signs <math>\delta_1</math> and <math>\delta_4
Let us suppose that in a sample of 10,000 subjects from 20 to 70 we will have an incidence of 30 subjects <math>p(D)=0.003</math> showing clinical signs <math>\delta_1</math> and <math>\delta_4
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,119

edits