Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, Interface administrators, lookupuser, oversight, Push subscription managers, Suppressors, Administrators, translator, Widget editors
17,889
edits
Gianfranco (talk | contribs) |
Gianfranco (talk | contribs) |
||
Line 216: | Line 216: | ||
==Evidences== | ==Evidences== | ||
A synthetic extraction of the contents of the article by Jessica M D'Amico et al.,<ref name=":12" />, shows evidence that the discharge of neurons in the raphe nuclei, in the locus coeruleus, in the subcoeruleus and in A5/A7 cells, | A synthetic extraction of the contents of the article by Jessica M D'Amico et al.,<ref name=":12" />, shows evidence that the discharge of neurons in the raphe nuclei, in the locus coeruleus, in the subcoeruleus and in A5/A7 cells, releases serotonin and norepinephrine and facilitates PIC (persistent internal ionic currents referred to as 'PIC') to the trigeminal motor neuron pool. These episodes increase during micro-awakenings (Leung and Mason 1999,<ref>{{cita libro | ||
| autore = Leung CG | |||
| autore2 = Mason P | |||
| titolo = Physiological properties of raphe magnus neurons during sleep and walking | |||
| url = https://journals.physiology.org/doi/epdf/10.1152/jn.1999.81.2.584 | |||
| volume = | |||
| opera = J Neurophysiol | |||
| anno = 1999 | |||
| editore = American Physiological Society | |||
| città = Rockville, Maryland, USA | |||
| ISBN = | |||
| DOI = 10.1152/jn.1999.81.2.584 | |||
| PMID = 10036262 | |||
| PMCID = | |||
| oaf = <!-- qualsiasi valore --> | |||
| LCCN = | |||
| OCLC = | |||
}}</ref> Sakai and Crochet 2001,<ref>{{cita libro | |||
| autore = Sakai K | | autore = Sakai K | ||
| autore2 = Crochet S | | autore2 = Crochet S | ||
Line 233: | Line 250: | ||
| LCCN = | | LCCN = | ||
| OCLC = | | OCLC = | ||
}}</ref> Takahashi et al., 2010<ref>Takahashi K | }}</ref> Takahashi et al., 2010<ref>{{cita libro | ||
| autore = Takahashi K | |||
| autore2 = Kayama Y | |||
| autore3 = Lin JS | |||
| autore4 = Sakai K | |||
| titolo = Locus coeruleus neuronal activity during the sleep-waking cycle in mice | |||
| url = https://pubmed.ncbi.nlm.nih.gov/20542093/ | |||
| volume = | |||
| opera = Neuroscience | |||
| anno = 2010 | |||
| editore = | |||
| città = | |||
| ISBN = | |||
| DOI = 10.1016/j.neuroscience.2010.06.009 | |||
| PMID = 20542093 | |||
| PMCID = | |||
| oaf = <!-- qualsiasi valore --> | |||
| LCCN = | |||
| OCLC = | |||
}}</ref>). Individuals with bruxism experience an increase in the number of micro-awakenings during sleep (Kato et al. 2001,<ref>Kato T, Rompre PH, Montplaisir JY, Sessle BJ, Lavigne GJ. Sleep bruxism: an oromotor activity secondary to microarousal. J Dent Res 80: 1940–1944, 2001 [PubMed] [Google Scholar]</ref> 2003,<ref>Kato T, Montplaisir JY, Guitard F, Sessle BJ, Lavigne GJ. Evidence that experimentally induced sleep bruxism is a consequence of transient arousal. J Dent Res 82: 284–288, 2003 [PubMed] [Google Scholar]</ref> 2011<ref>Kato T, Masuda Y, Yoshida A, Morimoto T. Masseter EMG activity during sleep and sleep bruxism. Arch Ital Biol 149: 478–491, 2011 [PubMed] [Google Scholar]</ref>) with a probable increase in the monoaminergic drive towards trigeminal motor neurons. Accordingly, drugs such as serotonin reuptake inhibitors and amphetamines, which increase norepinephrine and serotonin levels, respectively, increase episodes of involuntary activity in bruxist participants (Lavigne et al. 2003,<ref>Lavigne GJ, Kato T, Kolta A, Sessle BJ.Neurobiological mechanisms involved in sleep bruxism. Crit Rev Oral Biol Med 14: 30–46, 2003 [PubMed] [Google Scholar]</ref> See and Tan 2003<ref>See SJ, Tan EK. Case Report: severe amphetamine-induced bruxism: treatment with botulinum toxin. Acta Neurol Scand 107: 161–163, 2003 [PubMed] [Google Scholar]</ref>) and the amplitude of PICs in motor neurons of the limbs (D'Amico et al. 2013,<ref>D'Amico JM, Murray KC, Li Y, Chan KM, Finlay MG, Bennett DJ, Gorassini MA. Constitutively-active 5HT2/α1 receptors facilitate muscle spasms after human spinal cord injury. J Neurophysiol 109: 1473–1484, 2013 [PMC free article] [PubMed] [Google Scholar]</ref> Udina et al. 2010<ref>Udina E, D'Amico J, Bergquist AJ, Gorassini MA.Amphetamine increases persistent inward currents in human motoneurons estimated from paired motor unit activity. J Neurophysiol 103: 1295–1303, 2010 [PMC free article] [PubMed] [Google Scholar]</ref>). | |||
Again on the same neurobiological tenor of GABA and Glutamate, the consideration of Andrisani G.<ref>Andrisani Giovanni, Andrisani Giorgia . The neurophysiological basis of bruxism.Heliyon. 2021 Jul 3;7(7):e07477. doi: 10.1016/j.heliyon.2021.e07477.eCollection 2021 Jul. | Again on the same neurobiological tenor of GABA and Glutamate, the consideration of Andrisani G.<ref>Andrisani Giovanni, Andrisani Giorgia . The neurophysiological basis of bruxism.Heliyon. 2021 Jul 3;7(7):e07477. doi: 10.1016/j.heliyon.2021.e07477.eCollection 2021 Jul. |
edits