Difference between revisions of "Verschlüsselter Code: Ephaptische Übertragung"

no edit summary
Tags: Mobile web edit Mobile edit Visual edit
Tags: Mobile web edit Mobile edit Visual edit
Line 25: Line 25:
{{Bookind2}}
{{Bookind2}}


== Introduction ==
== Einführung ==
In the chapter '[[1° Clinical case: Hemimasticatory spasm - en|1st Clinical case: Hemimasticatory spasm]]' we immediately reached a conclusion bypassing all the cognitive, clinical and scientific process which underlies the diagnostic definition but it is not that simple otherwise our poor patient Mary Poppins would not have had to wait 10 years for the correct diagnosis.<blockquote>It should be emphasized that it is not a question of negligence on the part of clinicians rather of the complexity of 'biological complex systems' and above all of a mindset still anchored to a 'classical probability' which categorizes healthy and diseased phenotypes according to symptoms and signs sampled clinicians instead of probing the 'State' of the system in the temporal evolution. This concept, anticipated in the chapter '[[Logic of medical language: Introduction to quantum-like probability in the masticatory system]]' and in '[[Conclusions on the status quo in the logic of medical language regarding the masticatory system]]' has laid the foundations for a medical language more articulated and less deterministic, mainly focused on the 'State' of the 'Mesoscopic System' whose purpose is, essentially, to decrypt the message in machine language generated by the Central Nervous System as we will assist in the description of other clinical cases that will be reported in the next Masticationpedia chapters. </blockquote>This model, which we propose with the term 'Cognitive Neural Network' abbreviated as 'RNC' is a dynamic cognitive intellectual process of the clinician who interrogates the network for self-training. The 'RNC' is not a 'Machine Learning' because while the latter must be trained by the clinician, with statistical and prediction adjustments, the 'RNC' trains the clinician or rather directs the clinician to the diagnosis while always being questioned following a logical human, hence the term 'cognitive'.
Im Kapitel '[[1° Clinical case: Hemimasticatory spasm - en|1. Klinischer Fall: Hemimastikatorischer Spasmus]]' wir kamen sofort zu einer Schlussfolgerung unter Umgehung aller kognitiven, klinischen und wissenschaftlichen Prozesse, die der diagnostischen Definition zugrunde liegen, aber es ist nicht so einfach, sonst hätte unsere arme Patientin Mary Poppins nicht 10 Jahre auf die richtige Diagnose warten müssen.<blockquote>Hervorzuheben ist, dass es sich nicht um eine Nachlässigkeit des Klinikers handelt, sondern um die Komplexität „biologischer Komplexsysteme“ und vor allem um eine noch an einer „klassischen Wahrscheinlichkeit“ verankerte Denkweise, die gesunde und kranke Phänotypen nach Symptomen kategorisiert und Zeichen untersuchten Kliniker, anstatt den „Zustand“ des Systems in der zeitlichen Entwicklung zu untersuchen. Dieses Konzept, vorweggenommen im Kapitel '[[Logic of medical language: Introduction to quantum-like probability in the masticatory system|Logik der medizinischen Sprache: Einführung in die quantenähnliche Wahrscheinlichkeit im Kausystem]]' and in '[[Conclusions on the status quo in the logic of medical language regarding the masticatory system|Schlussfolgerungen zum Status quo in der medizinischen Sprachlogik bezüglich des Kausystems]]' hat die Grundlagen für eine artikuliertere und weniger deterministische medizinische Sprache gelegt, die sich hauptsächlich auf den „Zustand“ des „mesoskopischen Systems“ konzentriert, dessen Zweck im Wesentlichen darin besteht, die vom Zentralnervensystem erzeugte Nachricht in Maschinensprache zu entschlüsseln, während wir helfen werden in der Beschreibung anderer klinischer Fälle, über die in den nächsten Kapiteln von Masticationpedia berichtet wird. </blockquote>Dieses Modell, das wir mit dem Begriff „Cognitive Neural Network“, abgekürzt als „RNC“, vorschlagen, ist ein dynamischer kognitiver intellektueller Prozess des Klinikers, der das Netzwerk zum Selbsttraining abfragt. Das „RNC“ ist kein „maschinelles Lernen“, denn während letzteres vom Kliniker mit statistischen und Vorhersageanpassungen trainiert werden muss, schult das „RNC“ den Kliniker oder leitet den Kliniker vielmehr zur Diagnose, während es immer einer Logik folgend befragt wird menschlich, daher der Begriff „kognitiv“.


In fact, some classic machine learning models, whose training in the laboratory gives positive results, fail when applied to the real context. This is typically attributed to a mismatch between the datasets the machine was trained with and the data it encounters in the real world. A practical example of this can be represented by the conflict of assertions encountered in the diagnostic process of our patient Mary Poppins between the dental and neurological context which only the support of the coherence demarcator <math>\tau</math>(cognitive process) managed to solve.
Tatsächlich versagen einige klassische Modelle des maschinellen Lernens, deren Training im Labor positive Ergebnisse liefert, wenn sie auf den realen Kontext angewendet werden. Dies wird normalerweise auf eine Diskrepanz zwischen den Datensätzen, mit denen die Maschine trainiert wurde, und den Daten, auf die sie in der realen Welt trifft, zurückgeführt. Ein praktisches Beispiel dafür kann der im diagnostischen Prozess unserer Patientin Mary Poppins angetroffene Behauptungskonflikt zwischen dem zahnmedizinischen und dem neurologischen Kontext darstellen, der nur die Stütze des Kohärenzdemarkators darstellt <math>\tau</math> (kognitiver Prozess) gelöst werden konnte.


One of the limits of machine learning, therefore, is known as "data shift",<ref>Jérôme Dockès, Gaël Varoquaux, Jean-Baptiste Poline. Preventing dataset shift from breaking machine-learning biomarkers.GigaScience, Volume 10, Issue 9, September 2021, giab055,</ref> or "data movement" and another underlying cause of the failure of some models outside the laboratory, is the "subspecification"<ref>Alexander D’Amour et al. Underspecification Presents Challenges for Credibility in Modern Machine Learning. Journal of Machine Learning Research 23 (2022) 1-61,Submitted 11/20; Revised 12/21; Published 08/22</ref><ref>Damien Teney, Maxime Peyrard, Ehsan Abbasnejad. Predicting Is Not Understanding: Recognizing and Addressing Underspecification in Machine Learning.ECCV 2022: Computer Vision – ECCV 2022 pp 458–476Cite as</ref> so much so that the attempt to build an algorithm-enhanced electronic medical record (EMR) system designed specifically for use in a cancer center, was a notable failure at an estimated cost of $39,000,000 USD. This effort was a 2012 partnership between M.D. Anderson Partners and IBM Watson in Houston, Texas.<ref>Herper M. MD Anderson benches IBM Watson in setback for artificial intelligence in medicine. Forbes. 2017 February 19. [Ref list]</ref> Early promotional news describing the project stated that the plan was to combine genetic data, pathology reports with doctors' notes and relevant journal articles to help doctors come up with diagnoses and treatments. However, five years later, in February 2017, M.D. Anderson announced that he had closed the project because, after several years of trying, he hadn't produced a tool for use with patients that was ready to move beyond pilot testing.{{q2|Fascinating and provocative, explain to me in detail|... the model is essentially simple in its cognitive complexity}}
Eine der Grenzen des maschinellen Lernens ist daher als „Datenverschiebung“ bekannt.,<ref>Jérôme Dockès, Gaël Varoquaux, Jean-Baptiste Poline. Preventing dataset shift from breaking machine-learning biomarkers.GigaScience, Volume 10, Issue 9, September 2021, giab055,</ref> oder "Datenbewegung" und eine weitere zugrunde liegende Ursache für das Versagen einiger Modelle außerhalb des Labors, ist die "Unterspezifikation"<ref>Alexander D’Amour et al. Underspecification Presents Challenges for Credibility in Modern Machine Learning. Journal of Machine Learning Research 23 (2022) 1-61,Submitted 11/20; Revised 12/21; Published 08/22</ref><ref>Damien Teney, Maxime Peyrard, Ehsan Abbasnejad. Predicting Is Not Understanding: Recognizing and Addressing Underspecification in Machine Learning.ECCV 2022: Computer Vision – ECCV 2022 pp 458–476Cite as</ref>so sehr, dass der Versuch, ein speziell für den Einsatz in einem Krebszentrum entwickeltes algorithmusgestütztes elektronisches Krankenaktensystem (EMR) zu bauen, mit geschätzten Kosten von 39.000.000 USD ein bemerkenswerter Fehlschlag war. Diese Bemühungen waren eine Partnerschaft von 2012 zwischen M.D. Anderson Partners und IBM Watson in Houston, Texas.<ref>Herper M. MD Anderson benches IBM Watson in setback for artificial intelligence in medicine. Forbes. 2017 February 19. [Ref list]</ref> Frühe Werbenachrichten, die das Projekt beschrieben, besagten, dass der Plan darin bestand, genetische Daten, pathologische Berichte mit ärztlichen Notizen und relevanten Zeitschriftenartikeln zu kombinieren, um Ärzten bei der Erstellung von Diagnosen und Behandlungen zu helfen. Fünf Jahre später, im Februar 2017, gab M.D. Anderson jedoch bekannt, dass er das Projekt eingestellt hatte, weil er nach mehreren Jahren des Versuchs kein Instrument zur Verwendung mit Patienten entwickelt hatte, das bereit war, über Pilotversuche hinauszugehen.{{q2|Faszinierend und provokativ, erkläre es mir ausführlich|... the model is essentially simple in its cognitive complexity}}


In essence, the encrypted machine language message sent out by the Central Nervous System in the 10 years of illness of our patient Mary Poppins was interpreted through verbal language as Orofacial Pain from Temporomandibular Disorders'. We have remarked several times, however, that human verbal language is distorted by vagueness and ambiguity therefore, not being a formal language, such as mathematical language, it can generate diagnostic errors. The message in machine language sent out by the Central Nervous System to be searched for is not pain (pain is a verbal language) but the anomaly of 'System State' in which the organism was in that time period. Hence the shift from the semiotics of the symptom and the clinical sign to the '[[System logic|System Logic]]' which, through 'Systems Theory' models, quantify the system's responses to incoming stimuli, even in healthy subjects.
Im Wesentlichen wurde die verschlüsselte maschinelle Sprachnachricht, die das Zentralnervensystem in den 10 Jahren der Krankheit unserer Patientin Mary Poppins aussendete, durch die verbale Sprache als orofazialer Schmerz aufgrund von Kiefergelenkserkrankungen interpretiert. Wir haben jedoch mehrfach angemerkt, dass die menschliche verbale Sprache durch Vagheit und Mehrdeutigkeit verzerrt ist und daher, da sie keine formale Sprache wie die mathematische Sprache ist, diagnostische Fehler erzeugen kann. Die zu suchende Nachricht in Maschinensprache, die vom Zentralnervensystem ausgesendet wird, ist nicht Schmerz (Schmerz ist eine verbale Sprache), sondern die Anomalie des „Systemzustands“, in dem sich der Organismus in diesem Zeitraum befand. Daher die Verschiebung von der Semiotik des Symptoms und des klinischen Zeichens hin zum '[[System logic|Systemlogik]]' die durch 'systemtheoretische' Modelle die Reaktionen des Systems auf eingehende Reize quantifizieren, sogar bei gesunden Probanden.


All this is replicated in the proposed 'RNC' model by dividing the process into incoming triggers (Input) and outgoing data (Output) to then be reiterated in a loop managed cognitively by the clinician up to the generation of a single node useful for the definitive diagnosis. The model basically breaks down as follows:
All dies wird im vorgeschlagenen „RNC“-Modell repliziert, indem der Prozess in eingehende Trigger (Input) und ausgehende Daten (Output) unterteilt wird, um dann in einer Schleife wiederholt zu werden, die vom Kliniker kognitiv verwaltet wird, bis zur Generierung eines einzelnen Knotens, der für die nützlich ist endgültige Diagnose. Das Modell gliedert sich im Wesentlichen wie folgt:


* '''Input:''' By incoming trigger we mean the cognitive process that the clinician implements as a function of the considerations received from previous statements, as has been pointed out in the chapters concerning the 'Medical language logic'. In our case, through the 'Consistency Demarcator <math>\tau</math>, the neurological context was defined as suitable instead of the dental one pursuing a clinical diagnostic explanation of TMDs. This trigger is of essential importance because it allows the clinician to center the network analysis initiation command which will connect a large sample of data corresponding to the set trigger. To this essential initial command, as an algorithmic decryption key, is added the last closing command which is equally important as it depends on the intuition of the clinician who will consider the decryption process finished. In Figure 1, the structure of the 'RNC' is represented in which the difference between the more common neural network structures in which the first stage is structured with a high number of input variables can be noted. In our 'RNC' the first stage corresponds only to a node and precisely to the network analysis initialization command called 'Consistency Demarcator <math>\tau</math>', the subsequent loops of the network, which allow the clinician to terminate or to reiterate the network, (1st loop open, 2st loop open,...... nst loop open) are decisive for concluding the decryption process ( Decrypted Code ). This step will be explained in more detail later in the chapter.
* '''Input''': Mit eingehendem Trigger meinen wir den kognitiven Prozess, den der Kliniker als Funktion der Überlegungen aus früheren Aussagen implementiert, wie in den Kapiteln zur „medizinischen Sprachlogik“ ausgeführt wurde. In unserem Fall durch den 'Consistency Demarcator <math>\tau</math>,Anstelle des zahnmedizinischen wurde der neurologische Kontext als geeignet definiert, um eine klinisch-diagnostische Erklärung von CMD zu verfolgen. Dieser Auslöser ist von wesentlicher Bedeutung, da er es dem Kliniker ermöglicht, den Netzwerkanalyse-Initiierungsbefehl zu zentrieren, der eine große Datenprobe entsprechend dem eingestellten Auslöser verbindet. Zu diesem wesentlichen Anfangsbefehl als algorithmischer Entschlüsselungsschlüssel wird der letzte Abschlussbefehl hinzugefügt, der ebenso wichtig ist, da er von der Intuition des Arztes abhängt, der den Entschlüsselungsprozess als abgeschlossen betrachtet. In Abbildung 1 ist die Struktur des „RNC“ dargestellt, in der der Unterschied zwischen den üblicheren neuronalen Netzwerkstrukturen, in denen die erste Stufe mit einer hohen Anzahl von Eingangsvariablen strukturiert ist, festgestellt werden kann. In unserem „RNC“ entspricht die erste Stufe nur einem Knoten und genau dem Netzwerkanalyse-Initialisierungsbefehl namens „Consistency Demarcator <math>\tau</math>', die nachfolgenden Schleifen des Netzwerks, die es dem Kliniker ermöglichen, das Netzwerk zu beenden oder zu wiederholen, (1. Schleife offen, 2. Schleife offen, ... n. Schleife offen) sind entscheidend für den Abschluss des Entschlüsselungsprozesses ( Decrypted Code ). Dieser Schritt wird später in diesem Kapitel ausführlicher erläutert.
[[File:Immagine 17-12-22 alle 11.34.jpeg|center|500x500px|'''Figure 1:'''Graphical representation of the 'RNC' proposed by Masticationpedia|thumb]]
[[File:Immagine 17-12-22 alle 11.34.jpeg|center|500x500px|Abbildung 1: Grafische Darstellung des von Masticationpedia vorgeschlagenen „RNC“.|thumb]]




<center></center>
<center></center>
* '''Output:''' The outgoing data from the network, which substantially correspond to a precise cognitive trigger request, returns a large number of data classified and correlated to the requested keyword. The clinician will have to devote time and concentration to continue decrypting the machine code. In fact, we have witnessed how, following the indications dictated by research criteria such as the 'Research Diagnostic Criteria' (RDC), our patient Mary Poppins was immediately categorized as 'TMDs' and we have also suggested a way to expand diagnostic capabilities in dentistry through a 'fuzzy' model that would allow to range in contexts other than one's own. This shows the complexity in making differential diagnoses and the difficulties in following a classical semiotic roadmap because we are anchored too much to verbal language and too little to a quantum culture of biological systems. This borders on the concept of machine language and initial decryption command that we will briefly explain in the next paragraph.
* '''Output''': Die ausgehenden Daten aus dem Netzwerk, die im Wesentlichen einer präzisen kognitiven Trigger-Anfrage entsprechen, liefern eine große Anzahl von Daten, die mit dem angeforderten Schlüsselwort klassifiziert und korreliert sind. Der Kliniker muss Zeit und Konzentration aufwenden, um mit der Entschlüsselung des Maschinencodes fortzufahren. Tatsächlich haben wir miterlebt, wie unsere Patientin Mary Poppins nach den von Forschungskriterien wie den „Research Diagnostic Criteria“ (RDC) vorgegebenen Indikationen sofort als „TMDs“ kategorisiert wurde, und wir haben auch einen Weg vorgeschlagen, die diagnostischen Möglichkeiten in zu erweitern Zahnheilkunde durch ein „unscharfes“ Modell, das es ermöglichen würde, sich in anderen Kontexten als dem eigenen zu bewegen. Dies zeigt die Komplexität von Differentialdiagnosen und die Schwierigkeiten, einem klassischen semiotischen Fahrplan zu folgen, weil wir zu sehr in der verbalen Sprache und zu wenig in einer Quantenkultur biologischer Systeme verankert sind. Dies grenzt an das Konzept der Maschinensprache und des anfänglichen Entschlüsselungsbefehls, das wir im nächsten Abschnitt kurz erläutern werden.


=== Initiation command ===
=== Einweihungsbefehl ===
For a moment let's imagine that the brain speaks the language of a computer and not vice versa as happens in engineering, to distinguish the aforementioned difference between machine language and human verbal language. To write a sentence, a word or a formula, the computer does not use the classic verbal mode (alphabet) or the decimal mode (numbers) with which we write mathematical formulas but its own 'writing' language code called html code for the web . Let's take as an example the writing of a fairly complex formula, it is presented to our brain in the verbal language with which we have learned to read a mathematical equation, in the following form:  
Stellen wir uns für einen Moment vor, dass das Gehirn die Sprache eines Computers spricht und nicht umgekehrt, wie dies in der Technik der Fall ist, um den oben erwähnten Unterschied zwischen Maschinensprache und menschlicher verbaler Sprache herauszuarbeiten. Um einen Satz, ein Wort oder eine Formel zu schreiben, verwendet der Computer nicht den klassischen verbalen Modus (Alphabet) oder den Dezimalmodus (Zahlen), mit denen wir mathematische Formeln schreiben, sondern seinen eigenen „schreibenden“ Sprachcode, der HTML-Code für das Web genannt wird . Nehmen wir als Beispiel das Schreiben einer ziemlich komplexen Formel, sie wird unserem Gehirn in der verbalen Sprache präsentiert, mit der wir gelernt haben, eine mathematische Gleichung zu lesen, in der folgenden Form:  


<blockquote><math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2)
<blockquote><math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2)
P(B=\beta|a=\alpha_2)</math> and let us imagine, letting our minds wander, that this formula corresponds to the message of the Central Nervous System, as we have anticipated, and in particular in the 'Ephaptic Transmission' still to be decrypted</blockquote>The computer and therefore the brain, for our metaphorical example, does not know verbal language or rather it is only a convention generated to simplify natural communication, rather it has its own one with which to write the formula mentioned and in the wiki text language (with extension .php) looks like this, represented in figure 2:                <blockquote>[[File:Codice mod.png|alt=|center|frame|'''Figura 2:''' Wiki text of a mathematical formula. Note the initialization <nowiki><math> command and the script exit </math></nowiki> command]]
P(B=\beta|a=\alpha_2)</math> und stellen wir uns gedanklich schweifend vor, dass diese Formel der Botschaft des Zentralnervensystems entspricht, wie wir es vorweggenommen haben, insbesondere in der noch zu entschlüsselnden „ephaptischen Übertragung“.</blockquote>Der Computer und damit das Gehirn, für unser metaphorisches Beispiel, kennt keine verbale Sprache bzw. ist nur eine zur Vereinfachung der natürlichen Kommunikation generierte Konvention, sondern hat eine eigene, mit der die genannte Formel und in der Wiki-Textsprache geschrieben werden kann ( mit Erweiterung .php) sieht wie folgt aus, dargestellt in Abbildung 2:                <blockquote>[[File:Codice mod.png|alt=|center|frame|Abbildung 2: Wiki-Text einer mathematischen Formel. Beachten Sie den Initialisierungsbefehl <nowiki><math> und den Script-Exit-Befehl </math></nowiki>]]


as you can see it has nothing to do with verbal language and in fact, the brain has its own machine language made up not of vowels, consonants and numbers but of action potentials, wave packets, frequencies and amplitudes, electric populations , etc. what we simply observe in an electroencephalographic tracing (EEG) and which represents, precisely, the electromagnetic fields on the scalp of the activity of the dipoles and the cerebral ionic currents that propagate in the encephalic volume. </blockquote>
wie Sie sehen können, hat es nichts mit verbaler Sprache zu tun, und tatsächlich hat das Gehirn seine eigene Maschinensprache, die nicht aus Vokalen, Konsonanten und Zahlen besteht, sondern aus Aktionspotentialen, Wellenpaketen, Frequenzen und Amplituden, elektrischen Populationen usw. was Wir beobachten einfach in einer elektroenzephalographischen Aufzeichnung (EEG), die genau die elektromagnetischen Felder auf der Kopfhaut der Aktivität der Dipole und der zerebralen Ionenströme darstellt, die sich im Gehirnvolumen ausbreiten. </blockquote>


The story, however, does not end here because this is a writing language that has nothing to do with the interpreter of computer hardware and therefore with the organic structure of the brain made up of Centers with specialized functions, synaptic, polysynaptic circuitry and other other. This writing language, therefore, derives from a machine language that is not modeled in the command '<nowiki><math>' rather than '+2\sum_{\alpha_1'} but derives from a binary language subsequently converted into html writing code. This is referred to as 'machine language' for both the computer and the brain and can be simulated as follows</nowiki>
Die Geschichte endet hier jedoch nicht, da dies eine Schreibsprache ist, die nichts mit dem Interpretieren von Computerhardware zu tun hat und daher mit der organischen Struktur des Gehirns, das aus Zentren mit spezialisierten Funktionen, synaptischen, polysynaptischen Schaltkreisen und anderem besteht . Diese Schreibsprache leitet sich also von einer Maschinensprache ab, die nicht im Befehl '<nowiki><math>' statt '+2\sum_{\alpha_1'} modelliert wird, sondern von einer nachträglich in html-Schreibcode umgewandelten Binärsprache. Dies wird sowohl für den Computer als auch für das Gehirn als „Maschinensprache“ bezeichnet und kann wie folgt simuliert werden</nowiki>


<blockquote>'''00101011 00110010 01011100 01110011 01110101 01101101''' 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00111100 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01100011 01101111 01110011 01011100 01110100 01101000 01100101 01110100 01100001 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01110011 01110001 01110010 01110100 01111011 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01111101 00100000 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 00101001 00001010 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01100001 00111101 01011100 01100001 '''01101100 01110000 01101000 01100001 01011111 00110010 00101001'''</blockquote><blockquote>But what if the following string 00101011 00110010 01011100 01110011 01110101 01101101 which corresponds to the <nowiki><math> command is not present in this code? </nowiki></blockquote>The message would be corrupted and the formula would not be generated due to lack of the most important step that of 'Initialization of the command code', as well as if we eliminated the last part of the code 01101100 01110000 01101000 01100001 01011111 00110010 00101001, corresponding to the closure of the script < /math> the formula would remain corrupted and indeterminate.  
<blockquote>'''00101011 00110010 01011100 01110011 01110101 01101101''' 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00111100 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01100011 01101111 01110011 01011100 01110100 01101000 01100101 01110100 01100001 01011111 01111011 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 01111101 01011100 01110011 01110001 01110010 01110100 01111011 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110001 00101001 01111101 00100000 01010000 00101000 01000001 00111101 01011100 01100001 01101100 01110000 01101000 01100001 01011111 00110010 00101001 00001010 01010000 00101000 01000010 00111101 01011100 01100010 01100101 01110100 01100001 01111100 01100001 00111101 01011100 01100001 '''01101100 01110000 01101000 01100001 01011111 00110010 00101001'''</blockquote><blockquote>Was aber, wenn die folgende Zeichenfolge 00101011 00110010 01011100 01110011 01110101 01101101, die dem Befehl <nowiki><math> entspricht, in diesem Code nicht vorhanden ist?</nowiki></blockquote>Die Nachricht wäre beschädigt und die Formel würde nicht generiert werden, da der wichtigste Schritt, die 'Initialisierung des Befehlscodes', fehlt, sowie wenn wir den letzten Teil des Codes 01101100 01110000 01101000 01100001 01011111 00110010 00101001 eliminieren, entsprechend der Schließung des Skripts < /math> würde die Formel beschädigt und unbestimmt bleiben.  


In practice, without the initial and final command, the formula is well described in the following form that is understandable to us:
In der Praxis ist die Formel ohne den Anfangs- und Endbefehl gut in der folgenden Form beschrieben, die für uns verständlich ist:


<math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2)
<math>+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2)
P(B=\beta|a=\alpha_2)</math>
P(B=\beta|a=\alpha_2)</math>


it would present itself in a way incomprehensible to most people.  
es würde sich auf eine Weise darstellen, die für die meisten Menschen unverständlich ist.  


+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2) P(B=\beta|a=\alpha_2)
+2\sum_{\alpha_1<\alpha_2}\cos\theta_{\alpha_1\alpha_2}\sqrt{P(A=\alpha_1)P(B=\beta|A=\alpha_1)} P(A=\alpha_2) P(B=\beta|a=\alpha_2)


Just as the lack of part of the binary code corrupts the representation of the formula, similarly the decryption of the machine language of the CNS is a source of vagueness and ambiguity of the verbal language and contextually of diagnostic error.
So wie das Fehlen eines Teils des Binärcodes die Darstellung der Formel verfälscht, so ist auch die Entschlüsselung der Maschinensprache des ZNS eine Quelle der Unbestimmtheit und Mehrdeutigkeit der verbalen Sprache und kontextuell diagnostischer Fehler.
=== Cognitive process ===
=== Kognitiver Prozess ===
----The heart of the 'RNC' model lies in the cognitive process referred exclusively to the clinician who is at the helm while the network essentially remains the compass that warns of off course and/or suggests other alternative routes but the decision-making responsibility always refers to the clinician ( human mind). In this simple definition, we will perceive it better at the end of the chapter, the synergism 'Neural network' and 'Human cognitive process' of the clinician will be self-implementing because on the one hand the clinician is trained or better guided by the neural network (database) and this The last one will be trained on the latest updated scientific-clinical event. Basically, the definitive diagnosis will add an additional piece of information to the temporal base knowledge <math>Kb_t</math>. This model differs substantially from 'machine learning' just by observing the two models in their structural configuration (Figures 1 and 3).
----Der Kern des „RNC“-Modells liegt in dem kognitiven Prozess, der sich ausschließlich auf den Kliniker bezieht, der am Ruder steht, während das Netzwerk im Wesentlichen der Kompass bleibt, der vor Kursabweichungen warnt und/oder andere Alternativrouten vorschlägt, aber die Entscheidungsverantwortung immer bezieht zum Kliniker (menschlicher Verstand). In dieser einfachen Definition, wir werden es am Ende des Kapitels besser erkennen, wird der Synergismus „neuronales Netzwerk“ und „menschlicher kognitiver Prozess“ des Klinikers selbstimplementierend sein, weil der Kliniker einerseits geschult oder besser angeleitet wird das neuronale Netz (Datenbank) und das Letzte wird auf dem letzten aktualisierten wissenschaftlich-klinischen Ereignis trainiert. Grundsätzlich fügt die endgültige Diagnose dem zeitlichen Basiswissen eine zusätzliche Information hinzu <math>Kb_t</math>.Dieses Modell unterscheidet sich wesentlich vom „maschinellen Lernen“ allein durch die Beobachtung der beiden Modelle in ihrer strukturellen Konfiguration (Abbildungen 1 und 3).
[[File:Joim12822-fig-0004-m.jpeg|alt=|left|thumb|200x200px|'''Figure 3:''' Graphic representation of an archetypal ANN in which it can be seen in the first stage of initialization where there are five input nodes<ref name=":1">G S Handelman, H K Kok, R V Chandra, A H Razavi, M J Lee, H Asadi. eDoctor: machine learning and the future of medicine.J Intern Med.2018 Dec;284(6):603-619.doi: 10.1111/joim.12822. Epub 2018 Sep 3.</ref> while in the 'RNC' model the first stage is composed of only one node. Follow text. ]]Figure 3 shows a typical neural network, also known as artificial NNs. These artificial NNs attempt to use multiple layers of calculations to mimic the concept of how the human brain interprets and draws conclusions from information.<ref name=":1" /> NNs are essentially mathematical models designed to handle complex and disparate information, and this algorithm's nomenclature comes from its use of synapse-like "nodes" in the brain.<ref>Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000; 19: 541–61.</ref> The learning process of a NN can be supervised or unsupervised. A neural network is said to learn in a supervised manner if the desired output is already targeted and introduced into the network by data training while unsupervised NN has no such pre-identified target outputs and the goal is to group similar units close together in certain areas of the range of values. The supervised module takes data (e.g., symptoms, risk factors, imaging and laboratory findings) for training on known outcomes and searches for different combinations to find the most predictive combination of variables. NN assigns more or less weight to certain combinations of nodes to optimize the predictive performance of the trained model.<ref>Abdi H. A neural network primer. J Biol Syst 1994; 02: 247–81.</ref>         
[[File:Joim12822-fig-0004-m.jpeg|alt=|left|thumb|200x200px|Abbildung 3: Grafische Darstellung eines archetypischen KNN, in dem es in der ersten Phase der Initialisierung zu sehen ist, wo es fünf Eingabeknoten gibt<ref name=":1">G S Handelman, H K Kok, R V Chandra, A H Razavi, M J Lee, H Asadi. eDoctor: machine learning and the future of medicine.J Intern Med.2018 Dec;284(6):603-619.doi: 10.1111/joim.12822. Epub 2018 Sep 3.</ref> während im "RNC"-Modell die erste Stufe aus nur einem Knoten besteht. Text folgen. ]]Abbildung 3 zeigt ein typisches neuronales Netzwerk, auch bekannt als künstliche NNs. Diese künstlichen NNs versuchen, mehrere Berechnungsebenen zu verwenden, um das Konzept nachzuahmen, wie das menschliche Gehirn Informationen interpretiert und daraus Schlussfolgerungen zieht.<ref name=":1" />NNs sind im Wesentlichen mathematische Modelle, die entwickelt wurden, um komplexe und unterschiedliche Informationen zu verarbeiten, und die Nomenklatur dieses Algorithmus stammt von der Verwendung von synapsenähnlichen „Knoten“ im Gehirn.<ref>Schwarzer G, Vach W, Schumacher M. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med 2000; 19: 541–61.</ref> Der Lernprozess eines NN kann überwacht oder unüberwacht sein. Ein neuronales Netzwerk soll überwacht lernen, wenn die gewünschte Ausgabe bereits zielgerichtet ist und durch Datentraining in das Netzwerk eingeführt wird, während ein nicht überwachtes NN keine solchen vorab identifizierten Zielausgaben hat und das Ziel darin besteht, ähnliche Einheiten in bestimmten Bereichen nahe beieinander zu gruppieren des Wertebereichs. Das überwachte Modul nimmt Daten (z. B. Symptome, Risikofaktoren, Bildgebung und Laborbefunde) zum Training bekannter Ergebnisse und sucht nach verschiedenen Kombinationen, um die am besten vorhersagbare Kombination von Variablen zu finden. NN weist bestimmten Kombinationen von Knoten mehr oder weniger Gewicht zu, um die Vorhersageleistung des trainierten Modells zu optimieren.<ref>Abdi H. A neural network primer. J Biol Syst 1994; 02: 247–81.</ref>         




Figure 1, on the other hand, corresponds to the 'RNC' model proposed and it can be seen how the first stage of acquisition is composed of a single node while the 'Machine learning' at the first node, the more incoming variables have the greater the 'Prediction' in exit. As mentioned, it should be taken into account that the first node is of fundamental importance because it already derives from a clinical cognitive process that led the ' <math>\tau</math> Coherence Demarcator' to determine a first-ever choice of field. From the initialization command, therefore, the neural network evolves in a series of states composed of a large number of nodes and then terminates at a first step of one or two nodes and then reiterates in a subsequent loop of several nodes until ending in the 'last conclusive node (decryption of the code). The initialization process of the first node, the last and the reiteration of the loop is exclusive to the human cognitive process of the clinician and not to a statistical automatism of machine learning, much less 'Hidden' stages. All open and closed loops must be known to the clinician.     


For further information on the subject, it is available on Masticationpedia in the chapter '[[An artificially intelligent (or algorithm-enhanced) electronic medical record in orofacial pain]]'
Abbildung 1 hingegen entspricht dem vorgeschlagenen 'RNC'-Modell und es ist ersichtlich, wie die erste Phase der Erfassung aus einem einzigen Knoten besteht, während das 'Maschinelle Lernen' am ersten Knoten die mehr eingehenden Variablen hat größer die 'Vorhersage' im Ausgang. Wie erwähnt, sollte berücksichtigt werden, dass der erste Knoten von grundlegender Bedeutung ist, da er bereits von einem klinischen kognitiven Prozess abstammt, der die ' <math>\tau</math> Kohärenz Demarkator“, um erstmals eine Feldauswahl zu treffen. Aus dem Initialisierungsbefehl entwickelt sich das neuronale Netzwerk daher in einer Reihe von Zuständen, die aus einer großen Anzahl von Knoten bestehen, und endet dann bei einem ersten Schritt von einem oder zwei Knoten und wiederholt sich dann in einer anschließenden Schleife von mehreren Knoten, bis es im " letzter schlüssiger Knoten (Entschlüsselung des Codes). Der Initialisierungsprozess des ersten Knotens, des letzten und die Wiederholung der Schleife ist ausschließlich dem menschlichen kognitiven Prozess des Klinikers vorbehalten und nicht einem statistischen Automatismus des maschinellen Lernens, geschweige denn „versteckten“ Stadien. Alle offenen und geschlossenen Regelkreise müssen dem Arzt bekannt sein.     


But let's see in detail how a 'RNC' is built
Weitere Informationen zum Thema finden Sie auf Masticationpedia im Kapitel '[[An artificially intelligent (or algorithm-enhanced) electronic medical record in orofacial pain|Eine künstlich intelligente (oder durch Algorithmen verbesserte) elektronische Patientenakte bei orofazialen Schmerzen]]'
 
Aber lassen Sie uns im Detail sehen, wie ein 'RNC' aufgebaut ist


== Cognitive Neural Network ==
== Cognitive Neural Network ==
Editor, Editors, USER, editor, translator
5,845

edits