Difference between revisions of "Dolore Orofacciale"

no edit summary
Line 46: Line 46:
<math>P(B=\beta)=\sum_\alpha P(A=\alpha)P(B=\beta|A=\alpha)</math>
<math>P(B=\beta)=\sum_\alpha P(A=\alpha)P(B=\beta|A=\alpha)</math>


Senza entrare in argomenti specialistici cerchiamo di descrivere brevemente il razionale di questa affermazione facendo notare, principalmente le differenze tra una modello probabilistico classico e quantistico.( per maggiori informazioni ma molto specialistiche vedi
Senza entrare in argomenti specialistici cerchiamo di descrivere brevemente il razionale di questa affermazione facendo notare, principalmente le differenze tra una modello probabilistico classico e quantistico.( per maggiori informazioni ma molto specialistiche vedi '[[Modellazione quantistica in biologia con sistemi e strumenti quantistici aperti]]')


Pertanto, nella probabilità claccisa (CP) la distribuzione di probabilità <math>B</math> può essere calcolata dalla probabilità <math>A</math> e dalle probabilità condizionate <math>P(B=\beta|A=\alpha)</math>. Nella probabilità quantistica (QP), la FTP classico è perturbato dal termine di interferenza (Khrennikov, 2010);<ref>Khrennikov A. Ubiquitous Quantum Structure: From Psychology To Finances Springer, Berlin-Heidelberg-New York(2010)</ref> per le osservabili quantistiche dicotomiche <math>A</math> e <math>B</math> di tipo von Neumann, cioè date dagli operatori hermitiani <math>\hat{A}</math> e <math>\hat{B}</math>, la versione quantistica di FTP ha la forma:
Pertanto, nella probabilità claccisa (CP) la distribuzione di probabilità <math>B</math> può essere calcolata dalla probabilità <math>A</math> e dalle probabilità condizionate <math>P(B=\beta|A=\alpha)</math>. Nella probabilità quantistica (QP), la FTP classico è perturbato dal termine di interferenza (Khrennikov, 2010);<ref>Khrennikov A. Ubiquitous Quantum Structure: From Psychology To Finances Springer, Berlin-Heidelberg-New York(2010)</ref> per le osservabili quantistiche dicotomiche <math>A</math> e <math>B</math> di tipo von Neumann, cioè date dagli operatori hermitiani <math>\hat{A}</math> e <math>\hat{B}</math>, la versione quantistica di FTP ha la forma:
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,119

edits