Difference between revisions of "Store:QLMen18"

no edit summary
(Created page with "===11.3. Psychological functions=== Now, we turn to the model presented in Section 10. A neural network is modeled as a compound quantum system; its state is presented in tensor product of single-neuron state spaces. Brain’s functions perform self-measurements modeled within theory of open quantum systems. (There is no need to consider state’s collapse.) State’s dynamics of some brain’s function (psychological function) <math>F</math> is described by the quantum...")
 
Line 7: Line 7:


==12. Concluding remarks==
==12. Concluding remarks==
Since 1990th (Khrennikov, 1999), quantum-like modeling outside of physics, especially modeling of cognition and decision making, flowered worldwide. ''Quantum information theory'' (coupled to measurement and open quantum systems theories) is fertile ground for quantum-like flowers. The basic hypothesis presented in this paper is that functioning of biosystems is based on the quantum information representation of their states. This representation is the output of the biological evolution. The latter is considered as the evolution in the information space. So, biosystems react not only to material or energy constraints imposed by the environment, but also to the information constraints. In this paper, biological functions are considered as open information systems interacting with information environment.
Since 1990th (Khrennikov, 1999),<ref>Khrennikov A. Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena. Found. Phys., 29 (1999), pp. 1065-1098</ref> quantum-like modeling outside of physics, especially modeling of cognition and decision making, flowered worldwide. ''Quantum information theory'' (coupled to measurement and open quantum systems theories) is fertile ground for quantum-like flowers. The basic hypothesis presented in this paper is that functioning of biosystems is based on the quantum information representation of their states. This representation is the output of the biological evolution. The latter is considered as the evolution in the information space. So, biosystems react not only to material or energy constraints imposed by the environment, but also to the information constraints. In this paper, biological functions are considered as open information systems interacting with information environment.


The quantum-like representation of information provides the possibility to process superpositions. This way of information processing is advantageous as saving computational resources: a biological function <math>F</math> need not to resolve uncertainties encoded in superpositions and to calculate JPDs of all compatible variables involved in the performance of <math>F</math>.
The quantum-like representation of information provides the possibility to process superpositions. This way of information processing is advantageous as saving computational resources: a biological function <math>F</math> need not to resolve uncertainties encoded in superpositions and to calculate JPDs of all compatible variables involved in the performance of <math>F</math>.
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,784

edits