Difference between revisions of "Store:QLMen17"

no edit summary
(Created page with "==11. Compound biosystems== ===11.1. Entanglement of information states of biosystems=== The state space <math>{\mathcal{H}}</math> of the biosystem <math>S</math> consisting of the subsystems <math>S_j,j=1,2,....n</math>, is the tensor product of subsystems’ state spaces<math>{\mathcal{H}}_j</math> , so {| width="80%" | |- | width="33%" |'''<big>*</big>''' | width="33%" |<math>\Im=\Im_1\otimes....\otimes\Im_n</math> | width="33%" align="right" |<math>(31)</math>...")
 
Line 93: Line 93:
Linearity of the quantum information representation of the biophysical processes in a cell induces the linear state dynamics. This makes the epigenetic evolution very rapid; the off-diagonal elements of the density matrix decrease exponentially quickly. Thus, our quantum-like model justifies the high speed of the epigenetic evolution. If it were based solely on the biophysical representation with nonlinear state dynamics, it would be essentially slower.
Linearity of the quantum information representation of the biophysical processes in a cell induces the linear state dynamics. This makes the epigenetic evolution very rapid; the off-diagonal elements of the density matrix decrease exponentially quickly. Thus, our quantum-like model justifies the high speed of the epigenetic evolution. If it were based solely on the biophysical representation with nonlinear state dynamics, it would be essentially slower.


Modeling based on theory of open systems leads to reconsideration of interrelation between the Darwinian with Lamarckian viewpoint on evolution. Here we concentrated on epimutations, but in the same way we can model mutations (Asano et al., 2015b).
Modeling based on theory of open systems leads to reconsideration of interrelation between the Darwinian with Lamarckian viewpoint on evolution. Here we concentrated on epimutations, but in the same way we can model mutations (Asano et al., 2015b).<ref>Asano M., Khrennikov A., Ohya M., Tanaka Y., Yamato I.
 
Quantum Adaptivity in Biology: From Genetics To Cognition
 
Springer, Heidelberg-Berlin-New York(2015)</ref>
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,784

edits