Difference between revisions of "Store:QLMen14"

no edit summary
(Created page with "===8.2. Biological functions in the quantum Markov framework=== We turn to the open system dynamics with the GKSL-equation. In our modeling, Hamiltonian  <math>\widehat{\mathcal{H}}</math> and Lindbladian  <math>\widehat{{L}}</math> represent some special ''biological function'' <math>F</math> (see Khrennikov et al., 2018) for details. Its functioning results from interaction of internal and external information flows. In Sections 10, 11.3,  <math>F</math> is some ''...")
 
Line 1: Line 1:
===8.2. Biological functions in the quantum Markov framework===
===8.2. Biological functions in the quantum Markov framework===
We turn to the open system dynamics with the GKSL-equation. In our modeling, Hamiltonian  <math>\widehat{\mathcal{H}}</math> and Lindbladian  <math>\widehat{{L}}</math> represent some special ''biological function'' <math>F</math> (see Khrennikov et al., 2018) for details. Its functioning results from interaction of internal and external information flows. In Sections 10, 11.3,  <math>F</math> is some ''psychological function''; in the simplest case <math>F</math> represents a question asked to  <math>S</math> (say  is a human being). In Section 7, <math>F</math>  is the ''gene regulation'' of glucose/lactose metabolism in Escherichia coli bacterium. In Sections 9, 11.2,  <math>F</math> represents the process of ''epigenetic mutation''. Symbolically biological function <math>F</math> is represented as a quantum observable: Hermitian operator  <math>\widehat{F}</math> with the spectral decomposition <math>\widehat{F}=\sum_xx\widehat{E}^F(x)</math>, where <math>x</math> labels outputs of <math>F</math>. Theory of quantum Markov state-dynamics describes the process of generation of these outputs.
We turn to the open system dynamics with the GKSL-equation. In our modeling, Hamiltonian  <math>\widehat{\mathcal{H}}</math> and Lindbladian  <math>\widehat{{L}}</math> represent some special ''biological function'' <math>F</math> (see Khrennikov et al., 2018)<ref>Khrennikov A., Basieva I., PothosE.M., Yamato I.


In the mathematical model (Asano et al., 2015b, Asano et al., 2017b, Asano et al., 2017a, Asano et al., 2015a, Asano et al., 2012b, Asano et al., 2011, Asano et al., 2012a), the outputs of biological function <math>F</math>  are generated via approaching a ''steady state'' of the GKSL-dynamics:  
Quantum Probability in Decision Making from Quantum Information Representation of Neuronal States, Sci. Rep., 8 (2018), Article 16225</ref> for details. Its functioning results from interaction of internal and external information flows. In Sections 10, 11.3,  <math>F</math> is some ''psychological function''; in the simplest case <math>F</math> represents a question asked to  <math>S</math> (say  is a human being). In Section 7, <math>F</math>  is the ''gene regulation'' of glucose/lactose metabolism in Escherichia coli bacterium. In Sections 9, 11.2,  <math>F</math> represents the process of ''epigenetic mutation''. Symbolically biological function <math>F</math> is represented as a quantum observable: Hermitian operator  <math>\widehat{F}</math> with the spectral decomposition <math>\widehat{F}=\sum_xx\widehat{E}^F(x)</math>, where <math>x</math> labels outputs of <math>F</math>. Theory of quantum Markov state-dynamics describes the process of generation of these outputs.
 
In the mathematical model (Asano et al., 2015b,<ref>Asano M., Khrennikov A., Ohya M., Tanaka Y., Yamato I.
 
Quantum Adaptivity in Biology: From Genetics To Cognition
 
Springer, Heidelberg-Berlin-New York(2015)</ref> Asano et al., 2017b,<ref>Asano M., Basieva I., Khrennikov A., Yamato I.
 
A model of differentiation in quantum bioinformatics
 
Prog. Biophys. Mol. Biol., 130 (Part A)(2017), pp. 88-98</ref> Asano et al., 2017a,<ref>Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y.
 
A quantum-like model of selection behavior
 
J. Math. Psychol., 78 (2017), pp. 2-12</ref> Asano et al., 2015a,<ref>Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y., Yamato I.
 
Quantum information biology: from information interpretation of quantum mechanics to applications in molecular biology and cognitive psychology. Found. Phys., 45 (10) (2015), pp. 1362-1378</ref> Asano et al., 2012b,<ref>Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y., Yamato I.
 
Towards modeling of epigenetic evolution with the aid of theory of open quantum systems
 
AIP Conf. Proc., 1508 (2012), p. 75</ref> Asano et al., 2011,<ref>Asano M., Ohya M., Tanaka Y., BasievaI., Khrennikov A.
 
Quantum-like model of brain’s functioning: decision making from decoherence
 
J. Theor. Biol., 281 (1) (2011), pp. 56-64</ref> Asano et al., 2012a<ref>Asano M., Basieva I., Khrennikov A., Ohya M., Tanaka Y., I
 
Yamato quantum-like model for the adaptive dynamics of the genetic regulation of e. coli’s metabolism of glucose/lactose
 
Syst. Synth. Biol., 6 (2012), pp. 1-7</ref>), the outputs of biological function <math>F</math>  are generated via approaching a ''steady state'' of the GKSL-dynamics:  


{| width="80%" |
{| width="80%" |
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, oversight, Suppressors, Administrators, translator
10,784

edits