Difference between revisions of "Complex Systems/pt"

Created page with "Tronco Encefálico e Mastigação"
(Created page with "Mesmo que esses resultados tenham sido atribuídos anteriormente à ativação dos receptores cocleares (som de alta intensidade), estes também podem ativar os receptores vestibulares")
(Created page with "Tronco Encefálico e Mastigação")
Line 194: Line 194:


===Mastigação e Processos Cognitivos===
===Mastigação e Processos Cognitivos===
<span lang="en" dir="ltr" class="mw-content-ltr">In recent years, mastication has been a topic of discussion about the maintenance and support effects of cognitive performance</span>.  
Nos últimos anos, a mastigação tem sido um tópico de discussão sobre os efeitos de manutenção e suporte do desempenho cognitivo..  


<span lang="en" dir="ltr" class="mw-content-ltr">An elegant study performed through <sub>f</sub>MR and positron emission tomography (PET) has shown that mastication leads to an increase in cortical blood flow and activates the additional somatosensory cortex, motor motor and insular, as well as the striatum, the thalamus, and the cerebellum</span>.  
Um elegante estudo realizado através de <sub>f</sub>MR e tomografia por emissão de pósitrons (PET) mostrou que a mastigação leva a um aumento no fluxo sanguíneo cortical e ativa o córtex somatossensorial adicional, motor motor e insular, bem como o estriado , o tálamo e o cerebelo.  
<span lang="en" dir="ltr" class="mw-content-ltr">Mastication right before performing a cognitive task increases oxygen levels in the blood (BOLD of the fMRI signal) in the prefrontal cortex and the hippocampus, important structures involved in learning and memory, thereby improving the performance task</span>.<ref>{{Cite book  
A mastigação logo antes de realizar uma tarefa cognitiva aumenta os níveis de oxigênio no sangue (BOLD do sinal de fMRI) no córtex pré-frontal e no hipocampo, estruturas importantes envolvidas no aprendizado e na memória, melhorando assim o desempenho da tarefa.<ref>{{Cite book  
  | autore = Yamada K
  | autore = Yamada K
  | autore2 = Park H
  | autore2 = Park H
Line 218: Line 218:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> <span lang="en" dir="ltr" class="mw-content-ltr">Previous epidemiological studies have shown that a reduced number of residual teeth, incongruous use of prosthetics, and a limited development of the mandibular force are directly related to the development of dementia, further supporting the notion that mastication contributes to maintaining cognitive functions</span>.<ref>{{Cite book  
  }}</ref> Estudos epidemiológicos anteriores mostraram que um número reduzido de dentes residuais, uso incongruente de próteses e um desenvolvimento limitado da força mandibular estão diretamente relacionados ao desenvolvimento de demência, reforçando ainda mais a noção de que a mastigação contribui para a manutenção das funções cognitivas.<ref>{{Cite book  
  | autore = Kondo K
  | autore = Kondo K
  | autore2 = Niino M
  | autore2 = Niino M
Line 238: Line 238:
  }}</ref>.
  }}</ref>.


<span lang="en" dir="ltr" class="mw-content-ltr">A recent study has provided further evidence in support of the interaction between masticatory processes, learning and memory, focusing on the function of the hippocampus that is essential for the formation of new memories</span><ref name="MFCF">{{Cite book  
Um estudo recente forneceu mais evidências em apoio à interação entre os processos mastigatórios, aprendizagem e memória, com foco na função do hipocampo que é essencial para a formação de novas memórias<ref name="MFCF">{{Cite book  
  | autore = Kubo KY
  | autore = Kubo KY
  | autore2 = Ichihashi Y
  | autore2 = Ichihashi Y
Line 262: Line 262:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref>. <span lang="en" dir="ltr" class="mw-content-ltr">An occlusal disharmony, such as loss of teeth and increases in the vertical occlusal dimension, causes bruxism or pain to the mastication muscles and temporomandibular disorders (TMDs)</span><ref>{{Cite book  
  }}</ref>. Uma desarmonia oclusal, como perda de dentes e aumento da dimensão oclusal vertical, causa bruxismo ou dor nos músculos da mastigação e disfunções temporomandibulares (DTMs)<ref>{{Cite book  
  | autore = Christensen J
  | autore = Christensen J
  | titolo = Effect of occlusion-raising procedures on the chewing system
  | titolo = Effect of occlusion-raising procedures on the chewing system
Line 301: Line 301:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref>. <span lang="en" dir="ltr" class="mw-content-ltr">Hence, to describe the impaired function of the hippocampus in a reduced situation or abnorme masticatory function, the authors employed an animal model (mice) called ‘Molarless Senescence-Accelerated Prone’ (SAMP8) in order to make a parallelism on man</span>. <span lang="en" dir="ltr" class="mw-content-ltr">In SAMP8 mice, to which the occlusion was modified, increasing the occlusal vertical dimension of about 0.1 mm with dental materials showed that the occlusal disharmony disrupts learning and memory</span>. <span lang="en" dir="ltr" class="mw-content-ltr">These animals showed an age-dependent deficit in space learning at Morris’s water</span>. <ref>{{Cite book  
  }}</ref>. Assim, para descrever a função prejudicada do hipocampo em uma situação reduzida ou função mastigatória anormal, os autores empregaram um modelo animal (camundongos) chamado ‘Molarless Senescence-Accelerated Prone’ (SAMP8) para fazer um paralelismo sobre o homem. Em camundongos SAMP8, para os quais a oclusão foi modificada, o aumento da dimensão vertical oclusal de cerca de 0,1 mm com materiais dentários mostrou que a desarmonia oclusal atrapalha o aprendizado e a memória. Esses animais mostraram um déficit dependente da idade no aprendizado espacial na água de Morris. <ref>{{Cite book  
  | autore = Arakawa Y
  | autore = Arakawa Y
  | autore2 = Ichihashi Y
  | autore2 = Ichihashi Y
Line 347: Line 347:
  }}</ref>  
  }}</ref>  


<span lang="en" dir="ltr" class="mw-content-ltr">Increasing the vertical dimension of the bite in SAMP8 mice decreases the number of pyramidal cells</span><ref name="ODIS" /> <span lang="en" dir="ltr" class="mw-content-ltr">and</span> <span lang="en" dir="ltr" class="mw-content-ltr">the numbers of their dendritic spines</span>.<ref>{{Cite book  
Aumentar a dimensão vertical da mordida em camundongos SAMP8 diminui o número de células piramidais<ref name="ODIS" /> e os números de suas espinhas dendríticas.<ref>{{Cite book  
  | autore = Kubo KY
  | autore = Kubo KY
  | autore2 = Kojo A
  | autore2 = Kojo A
Line 366: Line 366:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> <span lang="en" dir="ltr" class="mw-content-ltr">It also increases the hypertrophy and hyperplasia fibrillar protein acid in astrocytes in the regions of the CA1 and CA3 hippocampus</span>.<ref>{{Cite book  
  }}</ref> Também aumenta a hipertrofia e hiperplasia ácida da proteína fibrilar em astrócitos nas regiões do hipocampo CA1 e CA3.<ref>{{Cite book  
  | autore = Ichihashi Y
  | autore = Ichihashi Y
  | autore2 = Saito N
  | autore2 = Saito N
Line 389: Line 389:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref>. <span lang="en" dir="ltr" class="mw-content-ltr">In rodents and monkeys, occlusal disharmonies induced through an increase in the vertical dimension with acrylic increases on the incisors</span><ref name="ARESO">{{Cite book  
  }}</ref>. Em roedores e macacos, desarmonias oclusais induzidas pelo aumento da dimensão vertical com aumentos de acrílico nos incisivos<ref name="ARESO">{{Cite book  
  | autore = Areso MP
  | autore = Areso MP
  | autore2 = Giralt MT
  | autore2 = Giralt MT
Line 428: Line 428:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> <span lang="en" dir="ltr" class="mw-content-ltr">or</span> <span lang="en" dir="ltr" class="mw-content-ltr">the insertion of bite-plane in the jaw are associated with increased urinary cortisol levels and elevated plasma levels of corticosterone, suggesting that occlusal disharmony is also a source of stress</span>.
  }}</ref> ou a inserção do plano de mordida na mandíbula está associada ao aumento dos níveis de cortisol urinário e níveis plasmáticos elevados de corticosterona, sugerindo que a desarmonia oclusal também é uma fonte de estresse.


<span lang="en" dir="ltr" class="mw-content-ltr">In support of this notion, SAMP8 mice with learning deficits show a marked increase in the plasma levels of corticosterone</span><ref name="ICHI2" /> <span lang="en" dir="ltr" class="mw-content-ltr">and</span> <span lang="en" dir="ltr" class="mw-content-ltr">subregulation of GR and GRmRNA of the hippocampus</span>. <span lang="en" dir="ltr" class="mw-content-ltr">The occlusal disharmony also affects catecholaminergic activity</span>. <span lang="en" dir="ltr" class="mw-content-ltr">Alternating the closure of the bite by inserting an acrylic bite-plane on the lower incisors leads to an increase in levels of dopamine and noradrenaline in the hypothalamus and the frontal cortex</span><ref name="ARESO" /><ref>{{Cite book  
Em apoio a essa noção, camundongos SAMP8 com déficits de aprendizado mostram um aumento acentuado nos níveis plasmáticos de corticosterona<ref name="ICHI2" /> e subregulação de GR e GRmRNA do hipocampo. A desarmonia oclusal também afeta a atividade catecolaminérgica. Alternar o fechamento da mordida pela inserção de um plano de mordida de acrílico nos incisivos inferiores leva a um aumento nos níveis de dopamina e noradrenalina no hipotálamo e no córtex frontal<ref name="ARESO" /><ref>{{Cite book  
  | autore = Gómez FM
  | autore = Gómez FM
  | autore2 = Areso MP
  | autore2 = Areso MP
Line 450: Line 450:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref>, <span lang="en" dir="ltr" class="mw-content-ltr">and</span> <span lang="en" dir="ltr" class="mw-content-ltr">decreases in thyroxinaydroxylase, GTP cyclohydrochloride, and immunoreactive serotonin in the cerebral cortex and the caudate nucleus, in the nigra substance, in the locus ceruleus, and in the dorsal raphe nucleus, which are similar to chronic stress-induced changes</span>.<ref>{{Cite book  
  }}</ref>, e diminuição da tiroxinaidroxilase, do ciclocloridrato de GTP e da serotonina imunorreativa no córtex cerebral e no núcleo caudado, na substância negra, no locus ceruleus e no núcleo dorsal da rafe, que são semelhantes às alterações crônicas induzidas pelo estresse.<ref>{{Cite book  
  | autore = Feldman S
  | autore = Feldman S
  | autore2 = Weidenfeld J
  | autore2 = Weidenfeld J
Line 467: Line 467:
  | LCCN =  
  | LCCN =  
  | OCLC =  
  | OCLC =  
  }}</ref> <span lang="en" dir="ltr" class="mw-content-ltr">These changes in the catecolaminergic and serotonergic systems, induced by occlusal disharmonies, clearly affect the innervation of the hippocampus</span>. <span lang="en" dir="ltr" class="mw-content-ltr">The conditions of increasing the vertical dimension alter neurogenesis and lead to apoptosis in the ippocampal gyrus by decreasing the expression of the ippocampal brain derived from neurotrophic factors</span>: <span lang="en" dir="ltr" class="mw-content-ltr">all this could contribute to the changes in observed learning in animals with occlusal disharmony</span>.<ref name="MFCF" />
  }}</ref> Essas alterações nos sistemas catecolaminérgicos e serotoninérgicos, induzidas por desarmonias oclusais, afetam claramente a inervação do hipocampo. As condições de aumento da dimensão vertical alteram a neurogênese e levam à apoptose no giro ipocampal por diminuir a expressão do cérebro ipocampal derivado de fatores neurotróficos: tudo isso poderia contribuir para as mudanças na aprendizagem observada em animais com desarmonia oclusal.<ref name="MFCF" />


===<span lang="en" dir="ltr" class="mw-content-ltr">Brainstem and Mastication</span>===
===Tronco Encefálico e Mastigação===
[[File:Segmentazione Trigeminale.jpg|left|thumb|500px|'''<span lang="en" dir="ltr" class="mw-content-ltr">Figure</span> 2:''' <span lang="en" dir="ltr" class="mw-content-ltr">Segmentation of Trigeminal Nervous System</span>]]
[[File:Segmentazione Trigeminale.jpg|left|thumb|500px|'''Figura 2:''' Segmentação do Sistema Nervoso Trigêmeo]]
<span lang="en" dir="ltr" class="mw-content-ltr">The brainstem district is a relay area that connects the upper centres of the brain, the cerebellum, and the spinal cord, and provides the main sensory and motor innervation of the face, head, and neck through the cranial nerves</span>.  
O distrito do tronco encefálico é uma área de retransmissão que conecta os centros superiores do cérebro, o cerebelo e a medula espinhal e fornece a principal inervação sensorial e motora da face, cabeça e pescoço através dos nervos cranianos..  


<span lang="en" dir="ltr" class="mw-content-ltr">This plays a determining role in regulation of respiration, locomotion, posture, balance, excitement (including intestinal control, bladder, blood pressure, and heart rate)</span>. <span lang="en" dir="ltr" class="mw-content-ltr">It is responsible for regulating numerous reflexes, including swallowing, coughing, and vomiting</span>. <span lang="en" dir="ltr" class="mw-content-ltr">The brainstem is controlled by higher Cerebral Centers from cortical and subcortical regions, including the Basal Ganglia Nuclei and Diencephal, as well as feedback loops from the cerebellum and spinal cord</span>. <span lang="en" dir="ltr" class="mw-content-ltr">Neuromodulation can be achieved by the ‘classical’ mode of glutammatergic neurotransmitters and GABA (gamma-amino butyric acid) through a primary excitation and inhibition of the ‘anatomical network’, but can also be achieved through the use of transmitters acting on G-proteins</span>. <span lang="en" dir="ltr" class="mw-content-ltr">These neuromodulators include the monoamine (serotonine, noradrenaline, and dopamine) acetylcholine, as also glutamate and GABA</span>. <span lang="en" dir="ltr" class="mw-content-ltr">In addition, not only do neuropeptides and purines act as neuromodulators: so do other chemical mediators too, like Growth Factors which might have similar actions</span>.<ref>{{Cite book  
Isso desempenha um papel determinante na regulação da respiração, locomoção, postura, equilíbrio, excitação (incluindo controle intestinal, bexiga, pressão arterial e frequência cardíaca). É responsável por regular vários reflexos, incluindo deglutição, tosse e vômito. O tronco cerebral é controlado por centros cerebrais superiores das regiões corticais e subcorticais, incluindo os núcleos dos gânglios da base e o diencéfalo, bem como as alças de feedback do cerebelo e da medula espinhal.. A neuromodulação pode ser alcançada pelo modo “clássico” de neurotransmissores glutamatérgicos e GABA (ácido gama-aminobutírico) através de uma excitação primária e inibição da “rede anatômica”, mas também pode ser alcançada através do uso de transmissores que atuam nas proteínas G. Esses neuromoduladores incluem a monoamina (serotonina, noradrenalina e dopamina) acetilcolina, assim como glutamato e GABA. Além disso, não apenas os neuropeptídeos e as purinas atuam como neuromoduladores: o mesmo acontece com outros mediadores químicos, como os Fatores de Crescimento, que podem ter ações semelhantes.<ref>{{Cite book  
  | autore = Mascaro MB
  | autore = Mascaro MB
  | autore2 = Prosdócimi FC
  | autore2 = Prosdócimi FC
Line 494: Line 494:
  }}</ref>  
  }}</ref>  


<span lang="en" dir="ltr" class="mw-content-ltr">The neural network described above does not end with the only correlation between trigeminal somatosensory centres and other motor areas but also strays into the amigdaloidei processes through a correlation with the trigeminal brainstem area</span>. <span lang="en" dir="ltr" class="mw-content-ltr">The amygdala becomes active from fear, playing an important role in the emotional response to life-threatening situations</span>. <span lang="en" dir="ltr" class="mw-content-ltr">When lab rats feel threatened, they respond by biting ferociously</span>. <span lang="en" dir="ltr" class="mw-content-ltr">The force of the bite is regulated by the motor nuclei of the trigeminal system and trigeminal brainstem Me5</span>.<span lang="en" dir="ltr" class="mw-content-ltr">The Me5 transmits proprioceptive signals from the Masticatory muscles and parodontal ligaments to trigeminal nuclei and motors</span>. <span lang="en" dir="ltr" class="mw-content-ltr">Central Amygdaloid Nucleus (ACe) projections send connections to the trigeminal motor nucleus and reticular premotor formation and directly to the Me5</span>.
A rede neural descrita acima não termina com a única correlação entre os centros somatossensoriais do trigêmeo e outras áreas motoras, mas também se desvia para os processos amigdaloidei através de uma correlação com a área do tronco encefálico do trigêmeo. A amígdala torna-se ativa a partir do medo, desempenhando um papel importante na resposta emocional a situações de risco de vida. Quando os ratos de laboratório se sentem ameaçados, eles respondem mordendo ferozmente. A força da mordida é regulada pelos núcleos motores do sistema trigeminal e do tronco cerebral trigeminal Me5.O Me5 transmite sinais proprioceptivos dos músculos mastigatórios e ligamentos parodontais para os núcleos e motores do trigêmeo. As projeções do Núcleo Amigdalóide Central (ACe) enviam conexões para o núcleo motor trigeminal e formação pré-motora reticular e diretamente para o Me5.


<span lang="en" dir="ltr" class="mw-content-ltr">To confirm this, in a study conducted among mice, the neurons in the Central Amigdaloide nucleus (ACe) were marked after the injection of a retrograde tracer(Fast Blue), in the caudal nucleus of the Me5, indicating that the Amigdaloians send direct projections to the Me5, and suggest that the amygdala regulates the strength of the bite by modifying the neuronal activity in the Me5 through a neural facilitation</span>.<ref>{{Cite book  
Para confirmar isso, em um estudo realizado em camundongos, os neurônios do núcleo Amigdaloide Central (ACe) foram marcados após a injeção de um traçador retrógrado (Fast Blue), no núcleo caudal do Me5, indicando que os Amigdaloianos enviam projeções diretas ao Me5, e sugerem que a amígdala regule a força da mordida modificando a atividade neuronal no Me5 através de uma facilitação neural.<ref>{{Cite book  
  | autore = Shirasu M
  | autore = Shirasu M
  | autore2 = Takahashi T
  | autore2 = Takahashi T
Line 519: Line 519:
  }}</ref>  
  }}</ref>  


<span lang="en" dir="ltr" class="mw-content-ltr">Modifying occlusal ratios can alter oral somatosensory functions and the rehabilitative treatments of the Masticatory system should restore somatosensory functions</span>. <span lang="en" dir="ltr" class="mw-content-ltr">However, it is unclear why some patients fail to adapt to the masticatory restoration, and sensomotor disorders remain</span>. <span lang="en" dir="ltr" class="mw-content-ltr">At first, they would seem to be structural changes, not just functional ones</span>. <span lang="en" dir="ltr" class="mw-content-ltr">The primary motor cortex of the face is involved in the generation and control of facial gold movements and sensory inputs or altered motor functions, which can lead to neuroplastic changes in the M1 cortical area</span>.<ref name="MFCF" /><ref>{{Cite book  
A modificação das proporções oclusais pode alterar as funções somatossensoriais orais e os tratamentos reabilitadores do sistema mastigatório devem restaurar as funções somatossensoriais. No entanto, não está claro por que alguns pacientes não conseguem se adaptar à restauração mastigatória e os distúrbios sensório-motores permanecem. <span lang="en" dir="ltr" class="mw-content-ltr">At first, they would seem to be structural changes, not just functional ones</span>. <span lang="en" dir="ltr" class="mw-content-ltr">The primary motor cortex of the face is involved in the generation and control of facial gold movements and sensory inputs or altered motor functions, which can lead to neuroplastic changes in the M1 cortical area</span>.<ref name="MFCF" /><ref>{{Cite book  
  | autore = Avivi-Arber L
  | autore = Avivi-Arber L
  | autore2 = Lee JC
  | autore2 = Lee JC
Editor, Editors, USER, editor, translator
5,845

edits