Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, Interface administrators, lookupuser, oversight, Push subscription managers, Suppressors, Administrators, translator, Widget editors
17,885
edits
Gianfranco (talk | contribs) |
Gianfranco (talk | contribs) |
||
Line 137: | Line 137: | ||
<translate>To mathematically represent this degree of belonging is the function</translate> <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> <translate>called</translate> ''''<translate>Membership Function</translate>''''. <translate>The functio</translate>n <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> <translate>is a continuous function defined in the interval</translate> <math>[0;1]</math><translate>where it is</translate>: | <translate>To mathematically represent this degree of belonging is the function</translate> <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> <translate>called</translate> ''''<translate>Membership Function</translate>''''. <translate>The functio</translate>n <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> <translate>is a continuous function defined in the interval</translate> <math>[0;1]</math><translate>where it is</translate>: | ||
The graphical representation of the function <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> | *<math>\mu_ {\tilde {A}}(x) = 1\rightarrow </math> <translate>if</translate> <math>x</math> <translate>is totally contained in</translate> <math>A</math> (<translate>these points are called 'nucleus', they indicate <u>plausible</u> predicate values</translate>). | ||
*<math>\mu_ {\tilde {A}}(x) = 0\rightarrow </math> <translate>if</translate> <math>x</math> <translate>is not contained in</translate> <math>A</math> | |||
*<math>0<\mu_ {\tilde {A}}(x) < 1 \;\rightarrow </math> <translate>if</translate> <math>x</math> <translate>is partially contained in</translate> <math>A</math> (<translate>these points are called 'support', they indicate the <u>possible</u> predicate values</translate>). | |||
<translate>The graphical representation of the function</translate> <math>\mu_{\displaystyle {\tilde {A}}}(x)</math> <translate>can be varied; from those with linear lines (triangular, trapezoidal) to those in the shape of bells or 'S' (sigmoidal) as depicted in Figure 1, which contains the whole graphic concept of the function of belonging</translate>.<ref>{{Cite book | |||
| autore = Zhang W | | autore = Zhang W | ||
| autore2 = Yang J | | autore2 = Yang J |
edits