Incisal
Il paragrafo caricato descrive un'analisi matematica dei movimenti articolari dell'incisivo sul lato lavorante. Utilizzando le coordinate di tre punti nello spazio 2D (P1, P7 e H₃), vengono calcolate le distanze lineari tra i punti, oltre all'angolo tra i segmenti che collegano questi punti.
Punto | Distanza (pixel) | Distanza (mm) | Direzione in X
(antero-posteriore) |
Direzione in Y
(latero-mediale) |
---|---|---|---|---|
2 | 23.4 | 2.34 | Indietro | Laterale |
3 | 45.65 | 4.57 | Indietro | Laterale |
4 | 109.56 | 10.96 | Indietro | Laterale |
5 | 202.77 | 20.28 | Indietro | Laterale |
6 | 218.02 | 21.80 | Indietro | Laterale |
7 | 138.42 | 13.84 | Indietro | Laterale |
8 | 26.41 | 2.64 | Indietro | Laterale |
Dalla tabella, Descrizione focalizzata dell'analisi matematica dei punti Punti e coordinate coinvolte. Nel contesto della nostra analisi, abbiamo tre punti nello spazio 2D che ci interessano:Coordinate del punto 1 dell'incisivo sul lato lavorante: Coordinate del punto 7 dell'incisivo sul lato lavorante: *Coordinate del punto di riferimento dell'incisivo sul lato lavorante: Questi punti rappresentano tre posizioni specifiche all'interno di un sistema articolare che stiamo studiando, con l'obiettivo di calcolare l'angolo tra il segmento che unisce i punti e , e il segmento che unisce i punti e . Questo tipo di analisi è comune nella modellazione di movimenti articolari per comprendere come si muovono i segmenti di un sistema rispetto a un punto di riferimento, come nel caso di un sistema masticatorio.Iter matematico per il calcolo dell'angoloL'angolo tra due segmenti può essere calcolato utilizzando la **trigonometria vettoriale** e, in particolare, il **prodotto scalare**. Questo metodo è utile quando vogliamo determinare la relazione angolare tra due movimenti distinti nello spazio\Definizione dei vettoriIl vettore tra il punto e il punto :*Il vettore tra il punto e il punto :Innanzitutto, dobbiamo calcolare i vettori che rappresentano i segmenti tra i punti:Prodotto scalareIl **prodotto scalare** tra due vettori e è dato dalla formula:Sostituendo i valori calcolati:Calcolo delle normeLe norme (lunghezze) dei due vettori sono calcolate con la formula della lunghezza del vettore:
Calcolo dell'angoloOra possiamo usare la formula per il coseno dell'angolo tra i due vettori:Sostituendo i valori:Infine, l'angolo \(\theta\) è calcolato tramite la funzione arcoseno: Motivo dell'analisiL'obiettivo dell'analisi è determinare l'angolo tra due movimenti all'interno di un sistema articolare, in particolare nell'area di studio della cinematica masticatoria. La comprensione di questi angoli ci consente di:Valutare la dinamica mandibolare: Calcolare gli angoli tra i segmenti mandibolari può fornire informazioni essenziali su come la mandibola si sposta durante il movimento, aiutando a descrivere i pattern del movimento articolare.Modellare la biomeccanica del sistema masticatorio: Gli angoli tra i punti permettono di costruire modelli accurati che simulano il comportamento meccanico del sistema mandibolare, utilizzabili in applicazioni cliniche per diagnosi e trattamenti. Confrontare con angoli standard: Gli angoli misurati possono essere confrontati con valori normali o patologici per identificare eventuali alterazioni nei movimenti mandibolari che potrebbero indicare disturbi dell'articolazione temporomandibolare (ATM). Questo calcolo è fondamentale per fornire una descrizione matematica precisa della cinetica mandibolare e per migliorare la modellazione biomeccanica di strutture orofacciali, cruciali per la diagnosi e l'intervento clinico.}} le distanze lineari (in pixel e millimetri) mostrano un movimento generale "indietro" e "laterale". Il calcolo dettagliato dei vettori tra i punti, tramite prodotto scalare e norme, consente di determinare che l'angolo tra i segmenti è di 85.09°.
L'analisi aiuta a comprendere come i segmenti mandibolari si muovano rispetto a un punto di riferimento, con implicazioni per la modellazione biomeccanica della mandibola e la diagnosi di disturbi articolari.