Transcutaneous Electric Nerve Stimulation
Introduzione
L'articolazione temporo-mandibolare (TMJ) è un'articolazione a cerniera con proprietà biartrodiali, che consente i movimenti complessi richiesti per la masticazione[1]. Il disturbo temporo-mandibolare (TMD) si verifica quando la TMJ e le strutture anatomiche associate sono colpite[2][3]. Circa il 25% degli individui a livello globale mostra segni o sintomi di TMD[4]. Inoltre, i TMD si verificano 1,5-2,5 volte più frequentemente nelle donne rispetto agli uomini[5]. Si tratta di un disturbo prevalente, caratterizzato da dolore, disfunzione e disagio nella TMJ e nelle strutture circostanti, che influisce su una parte significativa della popolazione, limitando le attività quotidiane, riducendo la qualità della vita e aumentando i costi sanitari[6][7].
Diversi approcci terapeutici sono in fase di studio per la gestione dei TMD, con l'obiettivo di alleviare il dolore e migliorare la funzionalità della mandibola[8]. Sebbene siano disponibili metodi chirurgici e non chirurgici per trattare i TMD, il trattamento conservativo è l'opzione iniziale e primaria[9]. Le terapie farmacologiche comprendono l'uso di farmaci antinfiammatori non steroidei (FANS), antidepressivi e miorilassanti. Un'altra componente del trattamento consiste in tecniche di terapia occlusale e fisica, come la laserterapia a basso livello (LLLT), la stimolazione elettrica transcutanea del nervo (TENS) e l'ultrasuono[10].
La **TENS** ha acquisito riconoscimento come tecnica non invasiva e priva di farmaci per la gestione del dolore nei TMD. Consiste nell'applicazione di correnti elettriche a bassa frequenza sulla pelle tramite elettrodi di superficie[11][12]. Queste correnti stimolano i nervi sensoriali e modulano i segnali del dolore trasmessi al sistema nervoso centrale (CNS), alterando la percezione del dolore. La TENS è utilizzata nei pazienti con TMD per mirare ai muscoli e ai nervi circostanti la TMJ, promuovendo il rilassamento muscolare, riducendo gli spasmi muscolari e alleviando il disagio[13].
Comprendere l'efficacia comparativa della TENS e degli analgesici nel trattamento dei TMD è cruciale per i professionisti sanitari[14]. Identificando i vantaggi e gli svantaggi di entrambi gli approcci, i clinici possono selezionare l'opzione di trattamento più appropriata per ciascun paziente[15]. Inoltre, i pazienti con TMD possono trarre beneficio da una comprensione approfondita dei potenziali benefici e svantaggi della TENS e degli analgesici, permettendo loro di partecipare attivamente alle decisioni terapeutiche[16].
Confrontando la TENS con altre modalità di trattamento, studi hanno valutato la sua efficacia, sicurezza e praticabilità nel ridurre il dolore e migliorare la funzione della mandibola nei pazienti con TMD[17]. Nonostante il crescente riconoscimento della TENS come approccio non invasivo per la gestione dei TMD, manca un'analisi comparativa completa della sua efficacia rispetto agli analgesici comunemente usati nel trattamento dei TMD[18].
Il presente studio è stato progettato per colmare questa lacuna nella letteratura, valutando l'efficacia della TENS e degli analgesici in termini di riduzione del dolore e miglioramento funzionale, valutando la soddisfazione dei pazienti con entrambe le modalità e esaminando i potenziali effetti collaterali associati all'uso della TENS e degli analgesici.
In questo capitolo prendiamo in considerazione un altro argomento molto dibattuto su cui ancora non c'è una opinione univoca nella Comunità Scientifica Internazionale. Questa premessa viene confermata dal fatto che nonostante lo Research Diagnostic Criteria (RDC) abbia categoricamente invalidato la procedura clinica nella diagnostica dei pazienti affetti da Disordini Temporomandibolari, ancora viene considerata valida. Questo controsenso può essere verificato dalla esistenza in letteratura di conclusioni che generano contestualmente domande. Ne riportiamo qualcuna in ordine temporale:
2017- Rémi Esclassan[19]
L'obiettivo principale di questo lavoro era determinare la durata dell'applicazione della stimolazione elettrica transcutanea a frequenza ultra-bassa (ULF-TENS) necessaria per ottenere un sufficiente rilassamento dei muscoli masticatori. Nel complesso, i risultati suggeriscono che un'applicazione ideale di ULF-TENS dovrebbe durare 40 minuti per ottenere un rilassamento muscolare sufficiente sia nei pazienti con disturbi del sistema masticatorio sia nei soggetti sani, una durata che risulta coerente con la pratica clinica quotidiana.
2018- Rafaella Mariana Fontes de Bragança[20]
Valutare l'influenza della ULF-TENS sullo spostamento del condilo mandibolare e sulla ripetibilità della registrazione della relazione centrica (CR) La ULF-TENS non ha influenzato lo spostamento totale del condilo, indipendentemente dalla tecnica di registrazione della CR utilizzata (p > 0,05). La tecnica BM ha mostrato un miglioramento nella ripetibilità dopo l'uso della ULF-TENS.
2020- Yuanxiu Zhang[21]:
La stimolazione elettrica transcutanea del nervo (TENS) può servire come intervento non invasivo per i disturbi temporomandibolari (TMD) dolorosi al fine di migliorare la funzione motoria della mandibola, ma la sua efficacia è ancora oggetto di dibattito.
Questo studio parallelo ha valutato l'effetto della TENS sul dolore e sui modelli di movimento dopo movimenti ripetuti della mandibola in pazienti con articolazioni temporomandibolari (TMJ) dolorose e spostamento del disco senza riduzione (DDwoR), e li ha confrontati con volontari sani. Questo studio ha indicato che il dolore evocato dai movimenti è stato ridotto spontaneamente o dal sTENS nei pazienti con dolore alla TMJ con DDwoR e, in modo interessante, che la TENS potrebbe attenuare il dolore evocato dai movimenti e migliorare la funzione motoria della mandibola durante i movimenti ripetuti. I risultati potrebbero avere implicazioni per il trattamento con TENS nei pazienti con dolore alla TMJ con DDwoR.
Syeda Mahnoor Fatima[22]
Nel presente studio, i partecipanti hanno riportato più frequentemente dolore alla mascella, dolore facciale, click mandibolari, movimenti limitati della mascella e emicranie. Questo risultato ha fornito un'importante comprensione delle manifestazioni cliniche del TMD[23].
Il gruppo trattato con TENS ha mostrato una significativa riduzione dell'intensità del dolore, suggerendo che la TENS è un metodo efficace per alleviare il dolore correlato al TMD, mentre gli interventi analgesici non hanno mostrato miglioramenti significativi. Rispetto ad altre categorie, l'incidenza degli effetti collaterali con TENS è stata relativamente bassa. Questi risultati sottolineano l'importanza di considerare i potenziali effetti collaterali quando si valutano i benefici e i rischi delle varie opzioni terapeutiche[24].
I risultati attuali sono coerenti con uno studio secondo cui il 5-60% della popolazione generale soffre di almeno uno dei segni del TMD. Inoltre, il 48% dei pazienti con TMD ha mostrato sintomi clinici, tra cui tenerezza muscolare e difficoltà ad aprire la bocca[25]. Uno dei sottogruppi trattati con stimolazione nervosa elettrica a microcorrente (MENS) ha dimostrato un significativo miglioramento nei punteggi VAS. I sottogruppi trattati con TENS e MENS hanno mostrato miglioramenti comparabili nei punteggi VAS[26].
Uno studio ha supportato fortemente i risultati attuali, suggerendo che la terapia TENS può fornire un rapido sollievo dal dolore nei muscoli masticatori e migliorare la funzione masticatoria nei pazienti con TMD. Lo studio ha esaminato gli effetti immediati della TENS sul dolore muscolare causato dal TMD in 36 partecipanti con TMD. Prima e dopo il trattamento con TENS, sono state ottenute misurazioni oggettive dell'apertura massima della bocca e della forza massima del morso. L'intensità del dolore è stata misurata utilizzando la scala VAS. I muscoli colpiti sono stati trattati con TENS per 20 minuti a frequenze comprese tra 100Hz e 200Hz. Utilizzando gli strumenti Global Rating of Change (GRC), gli effetti del trattamento sono stati valutati. Nel gruppo TMD, l'intensità del dolore è diminuita significativamente dopo il trattamento con TENS[27].
Il presente studio ha alcune limitazioni, come un follow-up relativamente breve post-intervento. Un follow-up più lungo avrebbe potuto fornire approfondimenti sull'efficacia sostenuta e sui potenziali risultati a lungo termine delle terapie. Studi futuri con periodi di follow-up estesi potrebbero ulteriormente chiarire l'efficacia e la durabilità di TENS e analgesici nella gestione dei sintomi del TMD[28][29].
Ma veniamo allo specifico considerando gli argomenti presi in considerazione dallo RDC per invalidare la procedura clinica:
Table 1: DTM diagnostic methodologies analyzed and eliminated from the DRC because they are not scientifically validated | ||||
Diagnostic Tests | Cutoff | Sensitivity | Specificity | VPP |
Electrical stimulation methods | ||||
Free rest space before stimulation( Cooper e Rabuzzi 1984)[30] | 0.75-2.0 mm | 0.42 | 0.62 | 0.17 |
Free space to rest after electric-stimulation ( Cooper e Rabuzzi 1984;[30]) | 0.75-2.0 mm | 0.76 | 0.19 | 0.11 |
Closure trajectory before after electrical stimulation( Cooper e Rabuzzi 1984)[30] | Non definita | 0.75 | 0.27 | 0.12 |
Cutoff: Parameters and limits of significance that should divide sick from healthy, for each test reportedSensitivity: Ability of the specified test to identify the truly sick in a sample of healthy and sick subjects
Specificity: Ability of the specified test to identify the healthy in a sample of healthy and sick subjects Positive Predictive Value (PPV): Ratio of the ability of the specified test to identify truly sick (positive) patients on the total sick population in a sample of healthy and sick subjects. |
Free rest space before stimulation( Cooper e Rabuzzi 1984)[30]
La diagnosi di disfunzione miofasciale (MPD), comunemente chiamata sindrome dell'articolazione temporo-mandibolare, è stata tradizionalmente basata sulla presenza di un insieme di sintomi clinici che provocano dolore e limitazione del movimento. La causa di questa comune malattia è stata oggetto di controversia per oltre mezzo secolo. Non c'è stato accordo su diagnosi, causa e trattamento. La tecnologia bioelettronica avanzata rende ora possibile una diagnosi accurata, basata non solo sui sintomi clinici, ma su dati scientifici riproducibili. Una causa della MPD è discernibile e un trattamento affidabile è possibile, così come una risoluzione duratura monitorabile oggettivamente tramite il Kinesiografo Mandibolare (MKG 5-R) e il Processore Bioelettrico (EMIR).
Uno studio sui movimenti mandibolari e sulla funzione dei muscoli masticatori di 26 soggetti "normali" (ossia, clinicamente asintomatici) ha rivelato che la stragrande maggioranza presentava in realtà disfunzioni dei muscoli che muovono e posizionano la mandibola. Il significato di questo studio è duplice. Innanzitutto, dimostra una valida procedura di test per misurare il movimento mandibolare e la funzione muscolare. In secondo luogo, stabilisce che la maggior parte delle persone ha una predisposizione fisica alla MPD. Cambiamenti nella capacità adattativa della neuromuscolatura dovuti a traumi fisici o emotivi potrebbero quindi precipitare la MPD.
- Presenza della malattia generalizzata quasi in tutta la popolazione che fa nascere il dubbio Amletico: sono tutti malati oppure siamo noi che trattiamo in modo anomalo il sistem amasticatorio.
- La incoerenza dei dati se dal 1984 Cooper asserisce un miglioramento della sintomatologia e delle funzioni masticatorie come il free rest space ecc. e lo RDC nel 1990?? lo invalida perchè allora recenti articoli rivalorizzano la procedura clinica
- La risposta forse è più semplice di quanto sembra.
- EMG artefatto
Free way space before stimulation[31]
Lo spazio interocclusale, noto anche come "freeway space" dentale, è la distanza tra le arcate dentarie opposte quando la mandibola è in posizione di riposo fisiologico[32]. Esso funge da riferimento per le restaurazioni protesiche e influenza le relazioni occlusali e la dimensione verticale nell'odontoiatria restaurativa[33]. Mantenere uno spazio interocclusale adeguato assicura stabilità, comfort e funzionalità dei dispositivi protesici per il paziente, prevenendo disordini temporomandibolari (TMD) e affaticamento muscolare. Quando vengono escluse le variazioni anatomiche, cambiamenti anomali nello spazio interocclusale possono talvolta indicare abitudini parafunzionali attive, come il bruxismo[34].
L'equilibrio dello spazio interocclusale è strettamente legato a fattori come il tono muscolare, la salute dell'articolazione temporomandibolare (TMJ) e l'occlusione dentale[35]. Squilibri o tensioni in questi componenti possono influenzare la posizione di riposo della mandibola, influendo contemporaneamente sulla salute del complesso TMJ. Problemi come malocclusione, disallineamento, perdita dentale, restaurazioni protesiche, abitudini parafunzionali, affaticamento muscolare e invecchiamento contribuiscono a cambiamenti nello spazio interocclusale. Stimare lo spazio interocclusale in odontoiatria clinica è una sfida a causa della sua natura dinamica, influenzata da vari fattori. Ottenere misurazioni precise è complicato dalle variazioni individuali, dalla perdita dentale, dalle restaurazioni protesiche e dalle abitudini parafunzionali, e la mancanza di tecniche di misurazione standardizzate introduce soggettività e variabilità tra operatori[36].
Affrontare queste sfide richiede una comprensione approfondita delle influenze multifattoriali sullo spazio interocclusale. Il deep learning, un sottogruppo del machine learning, è una forma di intelligenza artificiale basata sulla modellazione predittiva e si presenta come un approccio promettente per riconoscere schemi e variazioni nello spazio interocclusale influenzate dal tono muscolare, dalla salute del TMJ e dall'occlusione dentale. Ad esempio, le reti neurali convoluzionali (CNN) possono apprendere relazioni complesse e potenzialmente standardizzare il processo di stima, riducendo la soggettività e la variabilità tra operatori, mentre modelli basati su regressione, come XGBoost, possono prevedere variabili continue e adattarsi alle significative variazioni individuali, tenendo conto di fattori come discrepanze occlusali e l'ampiezza di movimento mandibolare per fornire una stima solida dello spazio interocclusale[37][38].
Razionale dello studio
Nonostante i potenziali vantaggi, l'applicazione di approcci quantitativi per prevedere variabili continue, come lo spazio interocclusale, attraverso una moltitudine di variabili predittive, non è stata documentata nella letteratura dentale peer-reviewed. Sebbene i modelli di deep learning siano sempre più utilizzati in odontoiatria, la loro percezione di essere una "scatola nera" ha spinto i ricercatori a esplorare metodi per estrarre spiegazioni da questi modelli[39][40]. Lo studio attuale cerca di colmare questa lacuna nella letteratura dentale, esplorando la previsione accurata dello spazio interocclusale utilizzando parametri diversi elaborati attraverso il deep learning. Inoltre, sono stati utilizzati modelli di spiegabilità per decifrare quali parametri vengono prioritizzati dai modelli di deep learning nelle decisioni predittive[41]. I parametri presi in considerazione comprendono la storia clinica, i fattori occlusali, la valutazione del movimento mandibolare, l'analisi del movimento dei tessuti molli, l'attività muscolare normalizzata derivata dall'elettromiografia elaborata tramite deep learning e l'analisi non invasiva della funzione dell'articolazione temporomandibolare (TMJ).
Obiettivo della ricerca
Il presente studio mirava a prevedere lo spazio interocclusale dentale esaminando la storia clinica, i parametri occlusali, i movimenti mandibolari, il movimento dei tessuti molli, l'attività muscolare tramite elettromiografia (EMG) e la scansione intraorale 3D. Si ipotizzava che la previsione accurata dello spazio interocclusale non potesse basarsi esclusivamente sulla storia clinica e sui parametri investigativi non invasivi.
Materiali e metodi
Il Comitato Etico per la Ricerca Umana dell'Università di Adelaide (H-2022-185) ha approvato questo studio, che ha inoltre seguito il protocollo della checklist 2021 "Minimum Information for Clinical Artificial Intelligence Modelling" (MI-CLAIM)[42].
Criteri di eleggibilità
I criteri di eleggibilità richiedevano che i partecipanti avessero la maggior parte dei loro denti permanenti naturali, con non più di un dente mancante per quadrante. Se mancava un primo molare, tutti gli altri denti dell'arcata dovevano essere presenti. Gli individui venivano esclusi se presentavano arcate edentule di lunga estensione, arcate dentarie accorciate, molari decidui ritenuti, o due o più protesi parziali fisse o corone dentali. Per promuovere la randomizzazione e prevenire l'esclusione accidentale di individui che mostravano segni clinici di disfunzione dell'articolazione temporomandibolare ma non riferivano la condizione, i sintomi percepiti o le condizioni mediche esistenti non sono stati utilizzati come criteri di esclusione.
Reclutamento dei partecipanti
Tutti gli esperimenti sono stati eseguiti in conformità con le linee guida e le normative pertinenti. A metà del 2023, sono stati reclutati 70 partecipanti dall'Australia Meridionale, con 66 che hanno completato l'intero processo dopo aver ottenuto il consenso informato da tutti i soggetti/partecipanti. I segnali EMG di quattro individui erano affetti da forte rumore generato da conduzioni micro-elettriche causate dalla peluria facciale. La rimozione manuale del rumore avrebbe alterato sostanzialmente il segnale originale, quindi questi quattro partecipanti sono stati esclusi. La Figura 1 illustra i passaggi della raccolta dei dati clinici per lo studio, spiegati nelle sottosezioni successive. Prima della ricerca attuale, sono state condotte revisioni sistematiche sulle fonti più comuni di bias derivanti da fattori umani e dipendenti dal dispositivo nel tracciamento della mandibola e nelle decisioni basate sull'intelligenza artificiale riguardanti il complesso dell'articolazione temporomandibolare[43][44].
Raccolta della storia clinica
I partecipanti hanno inizialmente completato un questionario semi-strutturato riguardante la demografia, le abitudini parafunzionali auto-riferite e i sintomi di disfunzione temporomandibolare. Successivamente, hanno riportato la loro storia di trattamenti ortodontici e le condizioni mediche diagnosticate dai medici generici.
Tracciamento dei punti di riferimento facciali
I partecipanti sono stati seduti a 45 cm da una fotocamera consumer (Logitech Brio 4K) e istruiti a eseguire l'apertura massima della bocca senza assistenza, l'escursione laterale massima e la protrusione anteriore massima[45]. Ogni partecipante ha eseguito una singola sessione di registrazione video utilizzando la fotocamera Brio-4K con risoluzione 1080p a 60 fps, con una lente da 13 megapixel. I video sono stati prodotti con un bitrate nativo di 2500 Kbps, codificati utilizzando H.264 NVENC ed esportati in formato Matroska Video (.mkv).
Le registrazioni video sono state elaborate utilizzando un sistema di tracciamento dei punti di riferimento facciali basato su deep learning per valutare i modelli abituali di inclinazione della testa e gli spostamenti dei tessuti molli durante le escursioni laterali e il parlato, basato su implementazioni di ricerche precedenti[46]. Ciò è stato realizzato con un software open-source sviluppato internamente dagli autori, ovvero Dental Loop FLT12 v5.2 (<https://github.com/ElsevierSofwareX/SOFTX-D-23-00353>) e Dental Loop SnP v1.0 (<https://github.com/saadism777/Dental-Loop-SnP-Speech-and-Phonetic-Pattern-Recognition>)[47]. Il software ha eseguito il rilevamento e il tracciamento dei punti di riferimento facciali sia per i dati retrospettivi che per il tracciamento in tempo reale, utilizzando i pacchetti OpenCV e Dlib codificati secondo gli standard PEP-8[48][49]. Ha introdotto punti di riferimento cefalometrici per i tessuti molli personalizzati per misurazioni continue e ha visualizzato le statistiche video in una finestra OpenCV ridimensionabile. I risultati sono stati memorizzati e automaticamente tabulati, evitando così gli errori comunemente associati al tracciamento e alla segmentazione delle immagini basati sull'operatore.
Elettrognatografia digitale
I partecipanti sono stati quindi istruiti a ripetere le stesse attività connessi a un elettrognatografo (EGN) (JT-3D; BioResearch Associates Inc.). Ogni attività è stata ripetuta tre volte, e i valori medi degli spostamenti su piani verticali, laterali e sagittali sono stati quantificati in millimetri utilizzando la suite software fornita dal produttore (BioPak v8.9; BioResearch Associates Inc.). Lo spazio interocclusale è stato misurato istruendo i partecipanti ad assumere una posizione verticale di riposo e calibrando l'elettrognatografo per leggere questa posizione come spostamento 0. I partecipanti sono stati quindi invitati a portare le loro mandibole alla dimensione verticale occlusale e a far toccare i denti insieme due volte. I valori di spostamento verticale sono stati registrati per entrambi i tocchi. Questa procedura è stata eseguita secondo le raccomandazioni del produttore. Il processo è stato ripetuto tre volte per ciascun partecipante, e lo spostamento medio è stato registrato in millimetri.
Successivamente, i partecipanti hanno masticato una gomma da masticare senza zucchero per specifici intervalli di 15 secondi su ciascun lato e per ulteriori 20 secondi dove hanno masticato la gomma naturalmente. Sono stati registrati i valori quantitativi per l'ampiezza di movimento verticale e inclinato. I partecipanti sono stati quindi invitati a eseguire espressioni fonetiche di consonanti specifiche (fricative, sibilanti, linguodentali e bilabiali) mentre l'EGN rimaneva collegato. Successivamente, è stato chiesto ai partecipanti di pronunciare i numeri da 61 a 69, il che ha fornito una panoramica delle variazioni nel movimento della mandibola durante il passaggio tra le quattro consonanti specifiche. Lo spostamento mandibolare medio durante la pronuncia di ciascuna consonante è stato registrato. Gli script del parlato sono stati derivati da frasi stabilite in inglese delineate da Cheireici et al. nel 1979[50].
- ↑ Okoje VN, Aladelusi TO, Abimbola TA. Managing temporomandibular joint dislocation in ibadan: a review of 11 cases. Ann Ib Postgrad Med 2017;15:96-10
- ↑ Maini K, Dua A. Temporomandibular Syndrome. Treasure Island, FL: StatPearls Publishing; 2024
- ↑ Murphy MK, MacBarb RF, Wong ME, Athanasiou KA. Temporomandibular disorders: a review of etiology, clinical management, and tissue engineering strategies. Int J Oral Maxillofac Implants 2013;28:e393-414. doi: 10.11607/jomi.te20
- ↑ Warren MP, Fried JL. Temporomandibular disorders and hormones in women. Cells Tissues Organs 2001;169:187-92. doi: 10.1159/000047881
- ↑ Warren MP, Fried JL. Temporomandibular disorders and hormones in women. Cells Tissues Organs 2001;169:187-92. doi: 10.1159/000047881
- ↑ Kapos FP, Exposto FG, Oyarzo JF, Durham J. Temporomandibular disorders: a review of current concepts in aetiology, diagnosis and management. Oral Surg 2020;13:321-34. doi: 10.1111/ors.12473
- ↑ Alrizqi AH, Aleissa BM. Prevalence of Temporomandibular Disorders Between 2015-2021: A Literature Review. Cureus 2023;15:e37028. doi: 10.7759/cureus.37028
- ↑ Gil-Martínez A, Paris-Alemany A, López-de-Uralde-Villanueva I, La Touche R. Management of pain in patients with temporomandibular disorder (TMD): challenges and solutions. J Pain Res 2018;11:571-87. doi: 10.2147/JPR.S127950
- ↑ Abouelhuda AM, Khalifa AK, Kim YK, Hegazy SA. Non-invasive different modalities of treatment for temporomandibular disorders: review of literature. J Korean Assoc Oral Maxillofac Surg 2018;44:43-51. doi: 10.5125/jkaoms.2018.44.2.43
- ↑ Rezazadeh F, Hajian K, Shahidi S, Piroozi S. Comparison of the Effects of Transcutaneous Electrical Nerve Stimulation and Low-Level Laser Therapy on Drug-Resistant Temporomandibular Disorders. J Dent (Shiraz) 2017;18:187-92
- ↑ Shanavas M, Chatra L, Shenai P, Rao PK, Jagathish V, Kumar SP, et al. Transcutaneous electrical nerve stimulation therapy: An adjuvant pain controlling modality in TMD patients - A clinical study. Dent Res J (Isfahan) 2014;11:676-9
- ↑ Martimbianco ALC, Porfírio GJ, Pacheco RL, Torloni MR, Riera R. Transcutaneous electrical nerve stimulation (TENS) for chronic neck pain. Cochrane Database Syst Rev 2019;12:CD011927. doi: 10.1002/14651858.CD011927.pub2
- ↑ Hsieh YL, Yang CC, Yang NP. Ultra-Low Frequency Transcutaneous Electrical Nerve Stimulation on Pain Modulation in a Rat Model with Myogenous Temporomandibular Dysfunction. Int J Mol Sci 2021;22:9906. doi: 10.3390/ijms22189906
- ↑ Gil-Martínez A, Paris-Alemany A, López-de-Uralde-Villanueva I, La Touche R. Management of pain in patients with temporomandibular disorder (TMD): challenges and solutions. J Pain Res 2018;11:571-87. doi: 10.2147/JPR.S127950
- ↑ Beutler LE, Someah K, Kimpara S, Miller K. Selecting the most appropriate treatment for each patient. Int J Clin Health Psychol 2016;16:99-10. doi: 10.1016/j.ijchp.2015.08.001
- ↑ Garrigós-Pedrón M, Elizagaray-García I, Domínguez-Gordillo AA, DelCastillo-Pardo-de-Vera JL, Gil-Martínez A. Temporomandibular disorders: improving outcomes using a multidisciplinary approach. J Multidiscip Healthc 2019;12:733-47. doi: 10.2147/JMDH.S178507
- ↑ Chellappa D, Thirupathy M. Comparative efficacy of low-Level laser and TENS in the symptomatic relief of temporomandibular joint disorders: A randomized clinical trial. Indian J Dent Res 2020;31:42-7. doi: 10.4103/ijdr.IJDR_735_18
- ↑ Wu M, Cai J, Yu Y, Hu S, Wang Y, Wu M. Therapeutic Agents for the Treatment of Temporomandibular Joint Disorders: Progress and Perspective. Front Pharmacol 2021;11:596099. doi: 10.3389/fphar.2020.596099
- ↑ Rémi Esclassan 1, Anaïs Rumerio 2, Paul Monsarrat 1 2, Jean Claude Combadazou 1 2, Jean Champion 1 2, Florent Destruhaut 1 2, Christophe Ghrenassia 1 2. Optimal duration of ultra low frequency-transcutaneous electrical nerve stimulation (ULF-TENS) therapy for muscular relaxation in neuromuscular occlusion: A preliminary clinical study. Cranio. . 2017 May;35(3):175-179. doi: 10.1080/08869634.2016.1171479. Epub 2016 Apr 8.
- ↑ Rafaella Mariana Fontes de Bragança 1, Carolina Almeida Rodrigues 1, Melissa Oliveira Melchior 1, Laís Valencise Magri 1, Marcelo Oliveira Mazzetto 1. Ultra-low frequency transcutaneous electric nerve stimulation does not affect the centric relation registration. Cranio. . 2018 Jan;36(1):19-28. doi: 10.1080/08869634.2016.1278107. Epub 2017 Jan 27.
- ↑ Yuanxiu Zhang 1 2 3 4, Jinglu Zhang 1 3, Lin Wang 1 2 3, Kelun Wang 3 5, Peter Svensson 4 6 7. Effect of transcutaneous electrical nerve stimulation on jaw movement-evoked pain in patients with TMJ disc displacement without reduction and healthy controls. Acta Odontol Scand. . 2020 May;78(4):309-320. doi: 10.1080/00016357.2019.1707868. Epub 2019 Dec 26.
- ↑ Syeda Mahnoor Fatima, Tooba Zahoor, Ramsha Nawaz, Ahmed Tanveer, Syeda Soveba Zaidi. Role of transcutaneous electrical nerve stimulation in temporomandibular joint disorders. J Pak Med Assoc. . 2024 Sep;74(9):1645-1648. doi: 10.47391/JPMA.10874.
- ↑ Eweka OM, Ogundana OM, Agbelusi GA. Temporomandibular pain dysfunction syndrome in patients attending Lagos University Teaching Hospital, Lagos, Nigeria. J West Afr Coll Surg 2016;6:70-87
- ↑ Gil-Martínez A, Paris-Alemany A, López-de-Uralde-Villanueva I, La Touche R. Management of pain in patients with temporomandibular disorder (TMD): challenges and solutions. J Pain Res 2018;11:571-87. doi: 10.2147/JPR.S127950
- ↑ Ryan J, Akhter R, Hassan N, Hilton G, Wickham J, Ibarag S. Epidemiology of Temporomandibular Disorder in the General Population: a systematic review. Adv Dent & Oral Health 2019;10:555787. DOI: 10.19080/ADOH.2019.10.555787
- ↑ Saranya B, Ahmed J, Shenoy N, Ongole R, Sujir N, Natarajan S. Comparison of Transcutaneous Electric Nerve Stimulation (TENS) and Microcurrent Nerve Stimulation (MENS) in the Management of Masticatory Muscle Pain: A Comparative Study. Pain Res Manag 2019;2019:8291624. doi: 10.1155/2019/8291624
- ↑ Abe S, Miyagi A, Yoshinaga K, Matsuka Y, Matsumoto F, Uyama E, et al. Immediate Effect of Masticatory Muscle Activity with Transcutaneous Electrical Nerve Stimulation in Muscle Pain of Temporomandibular Disorders Patients. J Clin Med 2020;9:3330. doi: 10.3390/jcm9103330
- ↑ Jung KS, In TS, Cho HY. Effects of sit-to-stand training combined with transcutaneous electrical stimulation on spasticity, muscle strength and balance ability in patients with stroke: A randomized controlled study. Gait Posture 2017;54:183-7. doi: 10.1016/j.gaitpost.2017.03.007
- ↑ Konishi Y, McNair PJ, Rice DA. TENS Alleviates Muscle Weakness Attributable to Attenuation of Ia Afferents. Int J Sports Med 2017;38:253-7. doi: 10.1055/s-0042-118183
- ↑ 30.0 30.1 30.2 30.3 BC Cooper, D D Rabuzzi. Myofacial pain dysfunction syndrome: a clinical study of asymptomatic subjects. Laryngoscope. 1984 Jan;94(1):68-75. doi: 10.1002/lary.5540940116.
- ↑ nature Published: 16 July 2024 Predictive modelling of freeway space utilising clinical history, normalised muscle activity, dental occlusion, and mandibular movement analysis Taseef Hasan Farook, Tashreque Mohammed Haq, Lameesa Ramees & James Dudley
- ↑ Pleasure, M. A. Correct vertical dimension and freeway space. J Am Dental Assoc 43, 160–163 (1951)
- ↑ Pleasure, M. A. Correct vertical dimension and freeway space. J Am Dental Assoc 43, 160–163 (1951)
- ↑ Farook, T. H., Rashid, F., Alam, M. K. & Dudley, J. Variables infuencing the device-dependent approaches in digitally analysing jaw movement—a systematic review. Clin. Oral. Investig. 27(2), 489–504 (2022)
- ↑ Widmalm, S. E. et al. Unbalanced lateral mandibular deviation associated with TMJ sound as a sign in TMJ disc dysfunction diagnosis. J. Oral. Rehabil. 43, 911–920 (2016)
- ↑ Farook, T. H., Rashid, F., Alam, M. K. & Dudley, J. Variables infuencing the device-dependent approaches in digitally analysing jaw movement—a systematic review. Clin. Oral. Investig. 27(2), 489–504 (2022)
- ↑ Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 785–794 (2016)
- ↑ Farook, T. H. & Dudley, J. Automation and deep (machine) learning in temporomandibular joint disorder radiomics. A Systematic review. J. Oral. Rehabil. 50(6), 501–521 (2023)
- ↑ Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 785–794 (2016)
- ↑ Farook, T. H. & Dudley, J. Automation and deep (machine) learning in temporomandibular joint disorder radiomics. A Systematic review. J. Oral. Rehabil. 50(6), 501–521 (2023)
- ↑ Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 785–794 (2016)
- ↑ Makowski, D. et al. NeuroKit2: A Python toolbox for neurophysiological signal processing. Behav. Res. Methods 53, 1689–1696 (2021)
- ↑ Farook, T. H., Rashid, F., Alam, M. K. & Dudley, J. Variables infuencing the device-dependent approaches in digitally analysing jaw movement—a systematic review. Clin. Oral. Investig. 27(2), 489–504 (2022)
- ↑ Shwartz-Ziv, R. & Armon, A. Tabular data: Deep learning is not all you need. arXiv preprint arXiv:2106.03253 (2021)
- ↑ Farook, T. H., Saad, F. H., Ahmed, S. & Dudley, J. Dental Loop FLT: Facial landmark tracking. SofwareX 24, 101531 (2023)
- ↑ Saad, F. H. et al. Facial and mandibular landmark tracking with habitual head posture estimation using linear and fducial markers. Healthc. Technol. Lett. 11(1), 21–30 (2024)
- ↑ Farook, T. H., Saad, F. H., Ahmed, S. & Dudley, J. Dental loop SnP: Speech and phonetic pattern recognition. SofwareX 24, 101604 (2023)
- ↑ Farook, T. H., Saad, F. H., Ahmed, S. & Dudley, J. Dental Loop FLT: Facial landmark tracking. SofwareX 24, 101531 (2023)
- ↑ Farook, T. H., Saad, F. H., Ahmed, S. & Dudley, J. Dental loop SnP: Speech and phonetic pattern recognition. SofwareX 24, 101604 (2023)
- ↑ Chierici, G. & Lawson, L. Clinical speech considerations in prosthodontics: Perspectives of the prosthodontist and speech pathologist. J. Prosthet. Dent. 29, 29–39 (1973)